فرآیند های کوانتومی در علوم زیستی

نوع مقاله : مقاله ترویجی

نویسندگان

دانشگاه و پژوهشگاه عالی دفاع ملی و تحقیقات راهبردی، پژوهشکده آمادو فناوری دفاعی، تهران، ایران.

چکیده

زیست شناسی کوانتومی از رشته های نوظهور در حوزه مطالعات مکانیک کوانتومی است که طی دهه گذشته توجه زیادی را به خود معطوف کرده است. درگذشته فرض براین بود که ویژگی های مکانیک کوانتومی نظیر همدوسی، درهم تنیدگی و تونل زنی فقط در دمای نزدیک به صفر مطلق و سیستم های خالص اتفاق می افتند؛ بنابراین آن‌ها در دمای محیط و سامانه های زیستی که محیط هایی گرم و مرطوب هستند، تخریب خواهند شد؛ ازاین‌رو، این ویژگی های در سامانه های زیستی نادیده گرفته می شدند.
آیا مکانیک کوانتومی نقشی در فرآیندهای زیستی دارد؟ اگرچه این سوال به اندازه نظریه کوانتوم قدیمی است اما اندازه گیری های اخیر بر سیستم های زیستی در مقیاس های زمانی بسیار سریع، پاسخ احتمالی را روشن کرده است. شواهد اخیر نشان می دهد که بعضی از پدیده های زیستی ممکن است برخی از ویژگی های منحصربه‌فرد مکانیک کوانتومی را به‌کارگیرند تا مزیت زیستی به دست آورند. تاکنون دانشمندان موفق شده اند که این خواص کوانتومی را در فرآیندهای فوتوسنتز، گیرندگی مغناطیسی در پرندگان، حس بویایی و کاتالیز آنزیمی مشاهده کنند. زیست شناسی کوانتومی مطالعه چنین فرایندهایی است. در این بررسی ما آخرین نتایج مربوط به اثرات کوانتومی غیربدیهی در پدیده های زیستی را ارائه می دهیم.

کلیدواژه‌ها


عنوان مقاله [English]

Quantum Process in Life Sciences

نویسندگان [English]

  • Amir Eshraghi
  • Seyyed Nasibollah Dousti-Motlagh
Commander in Chief, Supreme National Defense, Tehran, Iran
چکیده [English]

Quantum biology is one of the emerging disciplines in the field of quantum mechanics that has attracted a lot of attention over the past decade. In the past, it was assumed that the properties of quantum mechanics such as coherence, entanglement, and tunneling would occur only at temperatures close to absolute zero and pure systems; Therefore, they would collapse at ambient temperature and in biological systems which are hot and humid environments. Hence, the non-trivial quantum effects were ignored in biological systems.
Is there a functional role for quantum mechanics or coherent quantum effects in biological processes? While this question is as old as quantum theory, only recently have measurements on biological systems on ultra-fast time-scales shed light on a possible answer. Recent evidences suggest that some biological phenomena may use some of the unique properties of quantum mechanics to gain biological advantage. So far, scientists have been able to observe these quantum properties in the processes related to handful of biological phenomena such as photosynthesis, avian magnetoreception, olfaction, and enzymatic catalysis. Quantum biology is the study of such processes. In this review we present the latest results for non-trivial quantum effects in biological phenomena.

کلیدواژه‌ها [English]

  • Quantum biology
  • Photosynthesis
  • Avian magnetoreception
  • Olfaction
  • Enzyme catalysis
[1]. Mohseni M, Omar Y, Engel GS, Plenio MB (2013) Quantum effects in biology. Cambridge University Press; 1 edition,
[2]. Hore P, Rooman M (2011) Discussions on Session 5B:Quantum effects in biology: enzyme activity, bird navigation. Procedia Chemistry 3 (1):316-321. doi:https://doi.org/10.1016/j.proche.2011.08.039
[3]. Scholes GD, Fleming GR, Chen LX, Aspuru-Guzik A, Buchleitner A, Coker DF, Engel GS, van Grondelle R, Ishizaki A, Jonas DM, Lundeen JS, McCusker JK, Mukamel S, Ogilvie JP, Olaya-Castro A, Ratner MA, Spano FC, Whaley KB, Zhu X (2017) Using coherence to enhance function in chemical and biophysical systems. Nature 543 (7647):647-656. doi:10.1038/nature21425
[۴]. نصیری، فرید. شریعت پناهی، پیمان. رهنمای، محمد. موسوی موحدی، علی اکبر (۱۳۹۸)، زیست شناسی کوانتومی، نشریه نشاء علم، ۹(۲)، 63-72
[5]. Marais A, Adams B, Ringsmuth AK, Ferretti M, Gruber JM, Hendrikx R, Schuld M, Smith SL, Sinayskiy I, Krüger TPJ, Petruccione F, van Grondelle R (2018) The future of quantum biology. Journal of The Royal Society Interface 15 (148):20180640. doi:10.1098/rsif.2018.0640
[6]. McFadden J, Al-Khalilij.al-khalili J (2018) The origins of quantum biology.  474 (2220). doi:10.1098/rspa.2018.0674
[۷]. سربلوکی م (1380) حیات چیست؟ دیدگاه‌های برجسته‌ترین دانشمندان معاصر. کتاب ماد
[8]. Lee H, Cheng Y-C, Fleming GR (2007) Coherence Dynamics in Photosynthesis: Protein Protection of Excitonic Coherence. Science 316 (5830):1462. doi:10.1126/science.1142188
[9]. Wolynes PG (2009) Some quantum weirdness in physiology. Proceedings of the National Academy of Sciences 106 (41):17247. doi:10.1073/pnas.0909421106
[10]. Brookes JC, Horsfield AP, Stoneham AM (2009) Odour character differences for enantiomers correlate with molecular flexibility. Journal of The Royal Society Interface 6 (30):75-86. doi:10.1098/rsif.2008.0165
[11]. Engel GS, Calhoun TR, Read EL, Ahn T-K, Mančal T, Cheng Y-C, Blankenship RE, Fleming GR (2007) Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446 (7137):782-786. doi:10.1038/nature05678
[12]. Collini E, Wong CY, Wilk KE, Curmi PMG, Brumer P, Scholes GD (2010) Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463 (7281):644-647. doi:10.1038/nature08811
[13]. Kerpal C, Richert S, Storey JG, Pillai S, Liddell PA, Gust D, Mackenzie SR, Hore PJ, Timmel CR (2019) Chemical compass behaviour at microtesla magnetic fields strengthens the radical pair hypothesis of avian magnetoreception. Nature Communications 10 (1):3707. doi:10.1038/s41467-019-11655-2
[14]. Turin L (1996) A Spectroscopic Mechanism for Primary Olfactory Reception. Chemical Senses 21 (6):773-791. doi:10.1093/chemse/21.6.773
[15]. Arndt M, Juffmann T, Vedral V (2009) Quantum physics meets biology. HFSP Journal 3 (6):386-400. doi:10.2976/1.3244985
[16]. Romero E, Augulis R, Novoderezhkin VI, Ferretti M, Thieme J, Zigmantas D, van Grondelle R (2014) Quantum coherence in photosynthesis for efficient solar-energy conversion. Nature Physics 10 (9):676-682. doi:10.1038/nphys3017
[17]. Rathbone HW, Davis JA, Michie KA, Goodchild SC, Robertson NO, Curmi PMG (2018) Coherent phenomena in photosynthetic light harvesting: part one—theory and spectroscopy. Biophysical Reviews 10 (5):1427-1441. doi:10.1007/s12551-018-0451-2
[18]. Lambert N, Chen Y-N, Cheng Y-C, Li C-M, Chen G-Y, Nori F (2013) Quantum biology. Nature Physics 9 (1):10-18. doi:10.1038/nphys2474
[19]. Cogdell RJ, Gall A, Kohler J (2006) The architecture and function of thelight-harvesting apparatus of purple bacteria :from single molecules toin vivomembranes. Quarterly Reviews of Biophysics 39 (2):227-334
[20]. Sarovar M, Ishizaki A, Fleming GR, Whaley KB (2010) Quantum entanglement in photosynthetic light-harvesting complexes. Nature Physics 6 (6):462-467. doi:10.1038/nphys1652
[21]. Policht VR, Niedringhaus A, Ogilvie JP (2018) Characterization of Vibrational Coherence in Monomeric Bacteriochlorophyll a by Two-Dimensional Electronic Spectroscopy. The Journal of Physical Chemistry Letters 9 (22):6631-6637. doi:10.1021/acs.jpclett.8b02691
[22]. Rammler T, Wackenhut F, Oven-Krockhaus Sz, Rapp J, Forchhammer K, Harter K, Meixner AJ (2019) Quantum coherence in the photosynthesis apparatus of living cyanobacteria. bioRxiv:2019.2012.2013.875344. doi:10.1101/2019.12.13.875344
[23]. Phelan BT, Schultz JD, Zhang J, Huang G-J, Young Ryan M, Wasielewski MR (2019) Quantum coherence in ultrafast photo-driven charge separation. Faraday Discussions 216 (0):319-338. doi:10.1039/C8FD00218E
[24]. Wang L, Allodi MA, Engel GS (2019) Quantum coherences reveal excited-state dynamics in biophysical systems. Nature Reviews Chemistry 3 (8):477-490. doi:10.1038/s41570-019-0109-z
[25]. Brookes JC (2017) Quantum effects in biology: golden rule in enzymes, olfaction, photosynthesis and magnetodetection. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473 (2201):20160822. doi:10.1098/rspa.2016.0822
[26]. Scholes GD, Fleming GR, Olaya-Castro A, van Grondelle R (2011) Lessons from nature about solar light harvesting. Nature Chemistry 3 (10):763-774. doi:10.1038/nchem.1145
[27]. Lambert N, Chen Y-N, Cheng Y-C, Li C-M, Chen G-Y, Nori F (2012) Functional quantum biology in photosynthesis and magnetoreception. arxiv
[28]. Mohseni M, Rebentrost P, Lloyd S, Aspuru-Guzik A (2008) Environment-assisted quantum walks in photosynthetic energy transfer. The Journal of Chemical Physics 129 (17):174106. doi:10.1063/1.3002335
[29]. Rebentrost P, Mohseni M, Kassal I, Lloyd S, Aspuru-Guzik A (2009) Environment-assisted quantum transport. New Journal of Physics 11 (3):033003. doi:10.1088/1367-2630/11/3/033003
[30]. Offord C (2019) Quantum Biology May Help Solve Some of Life’s Greatest Mysteries. The Scientist.
[31]. Roswitha W, Wolfgang W (2014) Sensing Magnetic Directions in Birds: Radical Pair Processes Involving Cryptochrome. Biosensors 4 (3)
[32]. Wiltschko W (2003) Magnetic Orientation in Birds and Other Animals. In: Kramer B (ed) Advances in Solid State Physics. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 815-832. doi:10.1007/978-3-540-44838-9_58
[33]. Rodgers CT, Hore PJ (2009) Chemical magnetoreception in birds: The radical pair mechanism. Proceedings of the National Academy of Sciences 106 (2):353. doi:10.1073/pnas.0711968106
[34]. Wiltschko R, Stapput K, Thalau P, Wiltschko W (2010) Directional orientation of birds by the magnetic field under different light conditions. Journal of The Royal Society Interface 7 (suppl_2):S163-S177. doi:10.1098/rsif.2009.0367.focus
[35]. Schulten K, Swenberg CE, Weller A (1978) A Biomagnetic Sensory Mechanism Based on Magnetic Field Modulated Coherent Electron Spin Motion. Z Phys Chem (N F) 111 (1):1-5. doi:10.1524/zpch.1978.111.1.001
[36]. Steiner UE, Ulrich T (1989) Magnetic field effects in chemical kinetics and related phenomena. Chemical Reviews 89 (1):51-147. doi:10.1021/cr00091a003
[37]. Ritz T, Adem S, Schulten K (2000) A Model for Photoreceptor-Based Magnetoreception in Birds. Biophys J 78 (2):707-718. doi:https://doi.org/10.1016/S0006-3495(00)76629-X
[38]. Wiltschko R, Thalau P, Gehring D, Nießner C, Ritz T, Wiltschko W (2015) Magnetoreception in birds: the effect of radio-frequency fields. Journal of The Royal Society Interface 12 (103):20141103. doi:10.1098/rsif.2014.1103
[39]. Shaw J, Boyd A, House M, Woodward R, Mathes F, Cowin G, Saunders M, Baer B (2015) Magnetic particle-mediated magnetoreception. Journal of The Royal Society Interface 12 (110):20150499. doi:10.1098/rsif.2015.0499
[40]. Hiscock HG, Worster S, Kattnig DR, Steers C, Jin Y, Manolopoulos DE, Mouritsen H, Hore PJ (2016) The quantum needle of the avian magnetic compass. Proceedings of the National Academy of Sciences 113 (17):4634-4639. doi:10.1073/pnas.1600341113
[41]. Amoore JE (1963) Stereochemical Theory of Olfaction. Nature 199 (4896):912-913. doi:10.1038/199912b0
[42]. Bentley R (2006) The Nose as a Stereochemist. Enantiomers and Odor. Chemical Reviews 106 (9):4099-4112. doi:10.1021/cr050049t
[43]. Gane S, Georganakis D, Maniati K, Vamvakias M, Ragoussis N, Skoulakis EMC, Turin L (2013) Molecular vibration-sensing component in human olfaction. PLoS One 8 (1):e55780. doi:10.1371/journal.pone.0055780
[44]. Brookes JC (2011) Olfaction: the physics of how smell works? Contemporary Physics 52 (5):385-402. doi:10.1080/00107514.2011.597565
[45]. Al-Khalili J, McFadden J (2014) Life on the Edge: The Coming of Age of Quantum Biology. Bantam Press, London, UK
[46]. Asogwa C (2019) Quantum Biology: Can we explain olfaction using quantum phenomenon?
[47]. Brookes JC, Hartoutsiou F, Horsfield AP, Stoneham AM (2007) Could humans recognize odor by phonon-assisted tunneling. Physical Review Letters 98. doi:10.1103/PhysRevLett.98.038101
[48]. Brookes CJ, Horsfield PA, Stoneham MA (2012) The Swipe Card Model of Odorant Recognition. Sensors 12 (11). doi:10.3390/s121115709
[49]. Liza N, Blair EP (2019) An explicit electron-vibron model for olfactory inelastic electron transfer spectroscopy. Journal of Applied Physics 125 (14):144701. doi:10.1063/1.5086053
[50]. Som PM, Naidich TP (2018) The Olfactory System: Part II: How Olfaction Is Processed in the Olfactory Epithelium and Olfactory Bulb. Neurographics 8 (2):136-153. doi:10.3174/ng.1700003
[51]. Sakaushi K, Lyalin A, Taketsugu T, Uosaki K (2018) Quantum-to-Classical Transition of Proton Transfer in Potential-Induced Dioxygen Reduction. Physical Review Letters 121 (23):236001. doi:10.1103/PhysRevLett.121.236001
[52]. Lidar DA (2019) Lecture Notes on the Theory of Open Quantum Systems. arXiv:190200967:131
[53]. García-Pérez G, Rossi MAC, Maniscalco S (2020) IBM Q Experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Information 6 (1):1. doi:10.1038/s41534-019-0235-y
[54]. Lukzen NN, Ivanov KL, Sadovsky VM, Sagdeev RZ (2020) Magnetic field effect on recombination of radicals diffusing on a two-dimensional plane. The Journal of Chemical Physics 152 (3):034103. doi:10.1063/1.5131583
[55]. Jones GA, Bradshaw DS (2019) Resonance Energy Transfer: From Fundamental Theory to Recent Applications. Frontiers in Physics 7 (100). doi:10.3389/fphy.2019.00100
[56]. Bian Q, Ma F, Chen S, Wei Q, Su X, Buyanova IA, Chen WM, Ponseca CS, Linares M, Karki KJ, Yartsev A, Inganäs O (2020) Vibronic coherence contributes to photocurrent generation in organic semiconductor heterojunction diodes. Nature Communications 11 (1):617. doi:10.1038/s41467-020-14476-w
[57]. Kesarwani S, Mahajan A, Ganguly S IETS in MIS Contacts: Towards a Quantum Biomimetic Electronic Nose. In: 2018 IEEE SENSORS, 28-31 Oct. 2018 2018. pp 1-4. doi:10.1109/ICSENS.2018.8589860