مروری بر خواص زیست‌فعال ترکیبات فلوروتانین‌ استخراج شده از جلبک‌های قهوه‌ای دریایی

نوع مقاله : مقاله ترویجی

نویسندگان

گروه شیلات، دانشکده منابع طبیعی، دانشگاه گیلان، صومعه سرا، رشت، ایران

چکیده

امروزه اهمیت ترکیبات زیست فعال موجود در جلبک های دریایی برای اهداف دارویی به خوبی شناخته شده است. به خصوص، مواد نوتروسیتیک حاصل از جلبک های دریایی به عنوان منبع غنی از مؤلفه های سلامتی مورد استفاده قرار می گیرند. در بین جلبک های دریایی، جلبک های قهوه ای منبعی ارزشمند از ترکیبات طبیعی زیست فعال می باشند. این ترکیبات باعث ارتقاء سطح سلامت و کاهش خطر ابتلا به بیماری می شوند. منابع دریایی خلیج فارس غنی از جلبک هایی است که از خواص کاربردی آن ها شناخت کافی وجود ندارد. در طی سال های اخیر، بینش های امیدوارکننده در مورد زیست فعال بودن عصاره ها و ترکیبات جدا شده از ماکروجلبک های دریایی باعث شده است که توسعه محصولات مشتق از جلبک دریایی با توان تجاری افزایش یابد. فلوروتانین یکی از این ترکیبات طبیعی زیست فعال مهم می باشد که در این مقاله تلاش شده است تا مروری بر خواص دارویی آن انجام شود. نتایج نشان داد که ترکیبات فلوروتانین با مهار کردن رادیکال های آزاد در سلول ها، روند اکسایش را به تأخیر انداخته و همچنین با کاهش جهش های احتمالی از بسیاری از بیماری های قلبی-عروقی، سرطان و غیره جلوگیری می کنند. بنابراین می توان از این ترکیب زیست فعال برای ساخت داروهای جدید و همچنین مواد غذایی غنی شده جهت مقابله با ناهنجاری های موجود در انسان، بهره برد.

کلیدواژه‌ها


عنوان مقاله [English]

An Overview on Bioactive Properties of Phlorotannin Compounds from Marine Brown Algae

نویسندگان [English]

  • Alireza Hodhodi
  • Aria Babakhani
  • Haniyeh Rostamzad
Fisheries Department, Faculty of Natural resources, University of Guilan, Sowmeh Sara, Iran
چکیده [English]

Nowadays the importance of bioactive compounds from seaweeds is well known for pharmacological purposes. In particular, the neutrocytic compounds from seaweed are used as a rich source for medicinal applications. Among seaweeds, brown algae are a valuable source of natural bioactive compounds. These compounds improve health and reduce the risk of diseases. The marine resources from Persian Gulf are rich in algae that their functional properties are not sufficiently known. In recent years, promising insights into the bioactivity of extracts and compounds isolated from marine algae has increased the development of seaweed-derived products with commercial potential. Phlorotannin is one of these important natural bioactive compounds that in this article, an attempt has been made to review its pharmacological properties. The results showed that phlorotannin compounds delayed the oxidation process by inhibiting free radicals in cells and also prevented many cardiovascular diseases, cancer and etc. by reducing possible mutations. Therefore, this bioactive compound can be used to make new drugs and enriched foods to deal with abnormalities in humans.

کلیدواژه‌ها [English]

  • Brown algae
  • Phlorotannin compounds
  • Bioactive properties
  • Persian Gulf
[1]. Kadam, S. U., and Prabhasankar, P. (2010). Marine foods as functional ingredients in bakery and pasta products, Food Research International, Vol. 43, No. 8, PP. 1975-1980.
[2]. Liu, X., Luo, G., Wang, L., and Yuan, W. (2019). Optimization of antioxidant extraction from edible brown algae Ascophyllum nodosum using response surface methodology, Food and Bioproducts Processing, Vol. 114, PP. 205-215.
[3]. Barbosa, M., Lopes, G., Andrade, P. B., and Valentão, P. (2019). Bioprospecting of brown seaweeds for biotechnological applications: Phlorotannin actions in inflammation and allergy network, Trends in Food Science & Technology, Vol. 86, PP. 153-171.
[4]. Wood, D., Capuzzo, E., Kirby, D., Mooney-McAuley, K., and Kerrison, P. (2017). UK macroalgae aquaculture: What are the key environmental and licensing considerations? Marine Policy, Vol. 83, PP. 29-39.
[5]. FAO. (2016). The state of world fisheries and aquaculture, Food and Agriculture Oraganization of the United Nations, 2016.
[6]. FAO. (2018). The state of world fisheries and aquaculture”, Meeting the Sustainable Development Goals, Rome, PP. 358.
[7]. Indrawati, R., Sukowijoyo, H., Wijayanti, R. D. E., and Limantara, L. (2015). Encapsulation of brown seaweed pigment by freeze drying: characterization and its stability during storage, Procedia Chemistry, Vol. 14, PP. 353-360.
[8]. Ragan, M. A. (1986). Phlorotannins, brown algal polyphenols, Progress in Phycological Research, Vol. 4, PP. 177-241.
[9]. Shibata, T., Fujimoto, K., Nagayama, K., Yamaguchi, K., and Nakamura, T. (2002). Inhibitory activity of brown algal phlorotannins against hyaluronidase, International Journal of Food Science & Technology, Vol. 37, No. 6, PP. 703-709.
[10]. Mohamed, S., Hashim, S. N., & Rahman, H. A. (2012). Seaweeds: a sustainable functional food for complementary and alternative therapy, Trends in Food Science & Technology, Vol. 23, No. 2, PP. 83-96.
]11[. آریا باباخانی لشکان، مسعود رضائی، کرامت ا... رضایی و سید جعفر سیف­آبادی، (1391). بهینه­سازی استخراج ترکیبات آنتی­اکسیدانی جلبک قهوه­ای Sargassum angustifolium خلیج فارس به روش استخراج به کمک مایکروویو، نشریه شیلات، مجله منابع طبیعی ایران، شماره 3، صص 243-255.
]12[. محمود حافظیه، سید حسن حسینی، دانیال اژدری و حمیرا حسین­پور، (1391). برآورد ارزش غذایی دو گونه از گیاهان دریایی قهوه­ای و قرمز دریای عمان Sargassum ilicifolium و Gracillaria cortica، مجله علمی پژوهشی اقیانوس شناسی، بهار 93، شماره 17، صص 43-23.
]13[. مرتضی ضیاءالدینی، غلام­رسول بسکله و میرمهدی زاهدی دیزجی، (1397). بهینه­سازی استخراج ترکیبات فنولی کل دو نوع جلبک دریایی سارگاسوم (Sargassum sp.) و کاهو دریایی (Ulva sp.) در آب­های ساحلی چابهار به روش اولتراسونیک، مجله اقیانوس­شناسی، شماره 38، صص 1-10.
[14]. Safari, P., Rezaei, M., and Shaviklo, A. R. (2015). The optimum conditions for the extraction of antioxidant compounds from the Persian Gulf green algae (Chaetomorpha sp.) using response surface methodology, Journal of Food Science and Technology, Vol. 52, No. 5, PP. 2974-2981.
[15]. Arnold, T. M., and Targett, N. M. (2002). Marine tannins: the importance of a mechanistic framework for predicting ecological roles, Journal of Chemical Ecology, Vol. 28, No. 10, PP. 1919-1934.
[16]. Petchidurai, G., Amruthraj, N. J., John, M. S., Sahayaraj, K., Murugesan, N., and Pucciarelli, S. (2019). Standardization of quantification of total tannins, condensed tannin and soluble phlorotannins extracted from thirty-two drifted coastal macroalgae using high performance liquid chromatography, Bioresource Technology Reports, Vol. 7, PP. 100273.
[17]. Pinteus, S., Silva, J., Alves, C., Horta, A., Thomas, O., and Pedrosa, R. (2017). Antioxidant and cytoprotective activities of Fucus spiralis seaweed on a human cell in vitro model, International Journal of Molecular Sciences, Vol. 18, No. 2, PP. 292.
[18]. Wang, T., Jónsdóttir, R., Liu, H., Gu, L., Kristinsson, H. G., Raghavan, S., and Ólafsdóttir, G. (2012). Antioxidant capacities of phlorotannins extracted from the brown algae Fucus vesiculosus, Journal of Agricultural and Food Chemistry, Vol. 60, No. 23, PP. 5874-5883.
[19]. Meslet-Cladière, L., Delage, L., Leroux, C. J. J., Goulitquer, S., Leblanc, C., Creis, E., Gall, E. R., Stiger-Pouvreau, V., Czjzek, M., and Potin, P. (2013). Structure/function analysis of a type III polyketide synthase in the brown alga Ectocarpus siliculosus reveals a biochemical pathway in phlorotannin monomer biosynthesis, The Plant Cell, Vol. 25, No. 8, PP. 3089-3103.
[20]. Targett, N. M., and Arnold, T. M. (1998). Minireview-predicting the effects of brown algal phlorotannins on marine herbivores in tropical and temperate oceans, Journal of Phycology, Vol. 34, No. 2, PP. 195-205.
[21]. Samaraweera, A. M., Vidanarachchi, J. K., and Kurukulasuriya, M. S. (2012). Industrial applications of macroalgae. S. K. Kim, (ed)., Handbook of Marine Macroalgae Biotechnology and Applied Phycology, John Wiley & Sons Ltd. West Sussex. UK. PP. 500-521.
[22]. Li, Y., Qian, Z. J., Ryu, B., Lee, S. H., Kim, M. M., and Kim, S. K. (2009). Chemical components and its antioxidant properties in vitro: an edible marine brown alga, Ecklonia cava, Bioorganic & Medicinal Chemistry, Vol. 17, No. 5, PP. 1963-1973.
[23]. Shibata, T., Ishimaru, K., Kawaguchi, S., Yoshikawa, H., and Hama, Y. (2007). Antioxidant activities of phlorotannins isolated from Japanese Laminariaceae, In Nineteenth International Seaweed Symposium, PP. 255-261.
[24]. Sharifian, S., Shahbanpour, B., Taheri, A., and Kordjazi, M. (2019). Effect of phlorotannins on melanosis and quality changes of Pacific white shrimp (Litopenaeus vannamei) during iced storage, Food Chemistry, Vol. 298, PP. 124980.
[25]. Kang, S. M., Lee, S. H., Heo, S. J., Kim, K. N., and Jeon, Y. J., (2011), “Evaluation of antioxidant properties of a new compound, pyrogallol-phloroglucinol-6, 6'-bieckol isolated from brown algae, Ecklonia cava”, Nutrition Research and Practice, Vol. 5, No. 6, pp 495-502.
[26]. Kirke, D. A., Rai, D. K., Smyth, T. J., and Stengel, D. B. (2019). An assessment of temporal variation in the low molecular weight phlorotannin profiles in four intertidal brown macroalgae, Algal Research, Vol. 41, PP. 101550.
[27]. Audibert, L., Fauchon, M., Blanc, N., Hauchard, D., and Ar Gall, E. (2010). Phenolic compounds in the brown seaweed Ascophyllum nodosum: distribution and radical‐scavenging activities, Phytochemical Analysis, Vol. 21, No. 5, PP. 399-405.
[28]. Ferreres, F., Lopes, G., Gil-Izquierdo, A., Andrade, P., Sousa, C., Mouga, T., and Valentão, P. (2012). Phlorotannin extracts from fucales characterized by HPLC-DAD-ESI-MSn: approaches to hyaluronidase inhibitory capacity and antioxidant properties, Marine Drugs, Vol. 10, No. 12, PP. 2766-2781.
[29]. Vázquez-Rodríguez, B., Santos-Zea, L., Heredia-Olea, E., Acevedo-Pacheco, L., Santacruz, A., Gutiérrez-Uribe, J. A., and Cruz-Suárez, L. E. (2021). Effects of phlorotannin and polysaccharide fractions of brown seaweed Silvetia compressa on human gut microbiota composition using an in vitro colonic model, Journal of Functional Foods, Vol. 84, PP. 104596.
[30]. Catarino, M. D., Marçal, C., Bonifácio-Lopes, T., Campos, D., Mateus, N., Silva, A., Pintado, M. M., and Cardoso, S. M. (2021). Impact of Phlorotannin Extracts from Fucus vesiculosus on Human Gut Microbiota, Marine Drugs, Vol. 19, No. 7, PP. 375.
[31]. Nagayama, K., Iwamura, Y., Shibata, T., Hirayama, I., and Nakamura, T. (2002). Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome, Journal of Antimicrobial Chemotherapy, Vol. 50, No. 6, PP. 889-893.
[32]. Eom S. H., Kang M. S., and Kim YM. (2008). Antibacterial activity of the phaeophyta Ecklonia stolonifera on methicillin-resistant Staphylococcus aureus, Fisheries and Aquatic Sciences, Vol. 11, No.1, PP. 1-6.
[33]. Braden, K. W., Blanton Jr, J. R., Allen, V. G., Pond, K. R., and Miller, M. F. (2004). Ascophyllum nodosum supplementation: a preharvest intervention for reducing Escherichia coli O157: H7 and Salmonella spp. in feedlot steers, Journal of Food Protection, Vol. 67, No. 9, PP. 1824-1828.
[34]. Yuan, Y. V., and Walsh, N. A. (2006). Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds, Food and Chemical Toxicology, Vol. 44, No. 7, PP. 1144-1150.
[35]. Kong, C. S., Kim, J. A., Yoon, N. Y., and Kim, S. K. (2009). Induction of apoptosis by phloroglucinol derivative from Ecklonia cava in MCF-7 human breast cancer cells, Food and Chemical Toxicology, Vol. 47, No. 7, PP. 1653-1658.
[36]. Li, Y., QIAN, Z. J., KIM, M. M., and KIM, S. K. (2011). Cytotoxic activities of phlorethol and fucophlorethol derivatives isolated from Laminariaceae Ecklonia cava, Journal of Food Biochemistry, Vol. 35, No. 2, PP. 357-369.
[37]. Lee, S. H., Karadeniz, F., Kim, M. M., and Kim, S. K. (2009). α‐Glucosidase and α‐amylase inhibitory activities of phloroglucinal derivatives from edible marine brown alga, Ecklonia cava, Journal of the Science of Food and Agriculture, Vol. 89, No. 9, PP. 1552-1558.
[38]. Taghavi, F., and Moosavi-Movahedi, A. A., (2019), “Free Radicals, Diabetes, and Its Complexities” in Book “Plant and Human Health” Vol. 2, pp 1-41 [Ozturk, M., and Hakeem, K. R., (eds.)], Springer Nature Switzerland 1-41.
[39]. Wijesekara, I., Yoon, N. Y., and Kim, S. K., (2010), “Phlorotannins from Ecklonia cava (Phaeophyceae): Biological activities and potential health benefits”, Biofactors, Vol. 36, No. 6, pp 408-414.
[40]. McFarlane, S. I., Kumar, A., and Sowers, J. R. (2003). Mechanisms by which angiotensin-converting enzyme inhibitors prevent diabetes and cardiovascular disease, The American Journal of Cardiology, Vol. 91, No. 12, PP. 30-37.
[41]. Liu, J. C., Hsu, F. L., Tsai, J. C., Chan, P., Liu, J. Y. H., Thomas, G. N., Tomlinson, B., Lo, M. Y., and Lin, J. Y. (2003). Antihypertensive effects of tannins isolated from traditional Chinese herbs as non-specific inhibitors of angiontensin converting enzyme, Life Sciences, Vol. 73, No. 12, PP. 1543-1555.
[42]. Cha, S., Lee, K., and Jeon, Y. (2006). Screening of extracts from red algae in Jeju for potentials marine angiotensin-I converting enzyme (ACE) inhibitory activity, Algae Inchon, Vol. 21, No. 3, PP. 343-348.
[43]. Ahn, M. J., Yoon, K. D., Min, S. Y., Lee, J. S., Kim, J. H., Kim, T. G., and Kim, J. (2004). Inhibition of HIV-1 reverse transcriptase and protease by phlorotannins from the brown alga Ecklonia cava, Biological and Pharmaceutical Bulletin, Vol. 27, No. 4, PP. 544-547.
[44]. Artan, M., Li, Y., Karadeniz, F., Lee, S. H., Kim, M. M., and Kim, S. K. (2008). Anti-HIV-1 activity of phloroglucinol derivative, 6, 6′-bieckol, from Ecklonia cava, Bioorganic & Medicinal Chemistry, Vol. 16, No. 17, PP. 7921-7926.
[45]. Church, M. K., and Levi-Schaffer, F. (1997). The human mast cell, Journal of Allergy and Clinical Immunology, Vol. 99, No. 2, PP. 155-160.
[46]. Sugiura, Y., Matsuda, K., Yamada, Y., Nishikawa, M., Shioya, K., Katsuzaki, H., IMAI, K., and Amano, H. (2006). Isolation of a new anti-allergic phlorotannin, phlorofucofuroeckol-B, from an edible brown alga, Eisenia arborea, Bioscience, Biotechnology, and Biochemistry, Vol. 70, No. 11, PP. 2807-2811.
[47]. Kimiya, T., Ohtani, K., Satoh, S., Abe, Y., Ogita, Y., Kawakita, H., Hamada, H., Konishi, Y., Kubota, S., and Tominaga, A. (2008). Inhibitory effects of edible marine algae extract on degranulation of RBL-2H3 cells and mouse eosinophils, Fisheries Science, Vol. 74, No. 5, PP. 1157-1165.
[48]. Li, Y. X., Wijesekara, I., Li, Y., and Kim, S. K. (2011). Phlorotannins as bioactive agents from brown algae, Process Biochemistry, Vol. 46, No. 12, PP. 2219-2224.
[49]. Haavisto, F., Koivikko, R., and Jormalainen, V. (2017). Defensive role of macroalgal phlorotannins: benefits and trade-offs under natural herbivory, Marine Ecology Progress Series, Vol. 566, PP. 79-90.
[50]. Yoon, N. Y., Lee, S. H., and Kim, S. K. (2009). Phlorotannins from Ishige okamurae and their acetyl-and butyrylcholinesterase inhibitory effects. Journal of Functional Foods, Vol. 1, No.4, pp. 331-335.