نشریه نشاء علی سال دوم، شماره اول، دی ماه ۱۹

صاحب امتیاز: بنیاد پیشبرد علم و فناوری در ایران سردبیر: علی اکبر موسوی موحدی مدیر مسئول: عباسعلی زالی مدیر اجرایی: ابوالفضل کیانی بختیاری

هیات تحریریه:

احمد احمدی نوبری ،محسن بهرامی ، مهدی بهزاد، جعفر توفیقی، غلامرضا حبیبی،عباسعلی زالی، محمد علی زلفی گل، سعید سهراب پور، عباس شفیعی، عباس شکروی، مجتبی شمسی پور، علی اکبر صبوری، نصرت ا... ضرغام، محمد رضا عارف، کیوان کوشا، مهدی محقق، عباس مصلی نژاد، رضا ملک زاده، حمید میرزاده، جعفر مهراد، صادق واعظ زاده، بهمن یزدی صمدی.

* فصلنامه "نشاء علم" توسط بنياد پيشبرد علم و فنآورى در ايران منتشر مى شود.

* هدف از انتشار این فصلنامه، فرهنگ سازی و کمک در راستای سیاست گذاری علم، پژوهش و فناوری، اطلاع رسانی، ترویج علم، کمک به مدیران مراکز تصمیم ســـاز و تصمیم گیر علمی و همچنین جهت دهی به نخبگان، پژوهشگران و علاقه مندان به نوآوری های علمی، پژوهشی و فنآوری در کشور می باشد.

* آرا و نقطه نظرهای مندرج در مقالات و گزارش های منتشر شده در این فصلنامه، لزوماً بازگو کننده رای و نظر بنیاد پیشبرد علم و فنآوری در ایران نمی باشد.

* فصلنامه در ویرایش و حذف مطالب آزاد است و مقاله های فرستاده شده به دفتر نشریه، برگردانده نمی شود.

* نشریه نشاء علم از حمایت های معنوی و مادی بنیاد فرهنگی مصلی نژاد و صندوق حمایت از پژوهشگران کشور تقدیر و تشکر می نماید.

ISSN: X 8003-539

شمارگان:۱۰۰۰نسخه

قیمت هر شماره: ۱۵۰۰۰ ریال

ناشر: بنیاد پیشبرد علم و فنآوری در ایران

صفحه آرا: مريم فرزاد

چاپ: طراحان مثلث۲۲،۲۲۷۲

نشاني: تهران - توانير، خيابان دوستان، بلوار دوستان، بن بست شهروز غربي ، پلاک ٤ واحد ٢

تلفكس: ۹۸۲۱ (۹۸۲۱)

نشاني الكترونيك بنياد: www.fast-iran.ir

نشاني الكترونيك فصلنامه: SC@fast-iran.ir

عنوان صفحه

سخن سردبیر - اقتصاد سبز / علی اکبر موسوی موحدی
• زیر ساخت های دگردیسی دانش به فناوری/خشایار کریمیان
• عوامـل محیطـی ژن ها در بروز سـرطان هـا/ناصــر پارســا
• نقش شیر شیر شیر و ملکول های زیست فعال آن در درمان بیماری ها / امیر نیاسیری نسیلجی، هاجر
عربها، امان بی بی اتک پور، مریم سالامی، علی اکبر موسوی موحدی۲۰
• فناوری سنجش از راه دورحرارتی و کاربرد آن در شناسایی پدیده ها/ سید کاظم علوی پناه،
سعید گودرزی مهر، باهره خاکباز
•انوري زمين گرمايي و كاربردهاي آن/احمد رزاقيت
• اقتصاد سبز/ ســجاد ســروری
• برگزیدگان نوبل شیمی از آغاز تا امروز/فاطمه نوروزنژاد، مسعود شیبانی دومولا ٤٠
• رهنمودهای اخلاقی برای نویسندگان نوشتار های پژوهشی/مینا نادری، رویا رحیمی وقار، علی اکبر
موسوی موحدی
• تحقق پیش از موعد اهداف علمی سند چشم انداز ۲۰ساله کشور / مهدی بیات، صادق صالح زاده،
محمد على زلفـــى گل
• شبکه و خوشه های فناوری/ حجت اله مرادی پور، معصومه داستانی
• مبانى و منطق آموزش فنآورى/على اكبر خسروى، كامبيز پوشنه ،ابوالفضل كيانى بختيارى٧٠
•بدافزارهاوچالشهای ایمنی در محیط سایبر /نویدعلیزاده، زهر اانصاری
• معرفی کتاب

سخننخست

اقتصادسبز

مفهوم اقتصاد سبز چندین سال است که در محافل عملی، اقتصادی و سیاسی دنیا معرفی شده و مورد بحث قرار گرفته است. از سال ۱۳۸۹ تاکنون سه موضوع اقتصاد سبز، حاکمیت بین المللی محیط زیست سازمان ملل قرار گرفته است.

اقتصاد سبز آن گونهای از اقتصاد است که می تواند کیفیت بالاتری از زندگی را در چارچوب محدودیتهای زیست بوم سیاره زمین در اختیار همگان قرار دهد. چنین اقتصادی می تواند از یک سو رفاه و سلامتی را در جامعه انسانی ارتقاء دهد و از سوی دیگر خطرات زیست محیطی را کاهش دهد. اقتصاد سبز یعنی کاهش کلیه خطرات زیست محیطی و تولید فرآورده های سبز(محصولات سازگار با طبیعت) در روند زندگی انسانها که نتیجه آن منجر به سلامت و سرزندگی اجتماعی شهروندان در جوامع گوناگون می گردد.

یکی از راههای دستیابی و تحقق توسعه پایدار گرایش به سوی اقتصاد سبز است. گذار از اقتصاد فسیلی به سوی اقتصاد سبز مستلزم تمهید شرایط و زیر ساخت ها و بازنگری سیاست ها در سطوح ملی و بین المللی است. در این راستا باید تلاش شود تا یک همگرایی و همسویی عملگرا میان دستگاه های متولی برنامه ریزی توسعه اقتصادی و دستگاه های متولی برنامه ریزی محیط زیست و اقلیم صورت پذیرد. توسعه اقتصاد سبز بیش از هر زمان دیگر در عصر کنونی که شاهد بحران های جهانی هستیم و آسیب های ناشی از مصرف بی رویه انرژی های تجدید ناپذیر سلامت انسانها را به مخاطره انداخته است؛ ملموس تر است و می باید الزامات توسعه آن فراهم شود.

سیاستگذاری، برنامه ریزی و سرمایه گذاری دولت ها در راستای تقویت فنآوری های مبتنی بر انرژی های تجدید پذیر، تولید محصولات سبز و آموزش نیروی انسانی دانش محور از جمله الزامات اصلی برای توسعه اقتصاد سبز و پایدار است که می باید مورد توجه مسئولین و متولیان توسعه همه جانبه کشور قرار گیرد.

على اكبر موسوى موحدى سردبير

خشایار کریمیان ا

چکیده

دانش بدلیل کنجکاوی ذاتی بشر و تمایل فطری او به دانستن و پیش بینی نمودن پدیده های جهان هستی بوجود می آید. دانش الزاما بر مسائل کاربردی تمرکز نمی نماید و مالکیت ندارد. فنآوری هدفمند است و بر مسائلی که کاربرد تجاری دارند تمرکز می کند و مالکیت ان توسط قوانین ثبت اختراع محافظت می گردد.

از دیدگاه اجتماعی – اقتصادی، اگرچه که دانش و فناوری در پایه مشترک می باشند، لیکن پیشرفت علمی موئلفه لازم ولی نا کافی برای پیشرفت فناوری کشورها است. اکنون مشخص شده که دگردیسی موفق دانش به فناوری قائم بر توسعه سیاسی جوامع می باشد. دمکراسی پیش نیاز عدالت اجتماعی و اقتصادی و دولتمداری خوب، بازار آزاد و جامعه باز می باشد. در مجموع، این عوامل مهمترین تضمین کننده دگردیسی جامعه به کشوری پیشرفته می باشند. حتی مرور سطحی تغییرات سیاسی – اجتماعی دو دهه گذشته کشور های آسیای جنوب شرقی، اروپای شرقی و امریکای جنوبی موید این موضوع می باشد.

واژگان کلیدی: فناوری، دگردیسی دانش، ثبت اختراع، زیر ساخت فناوری.

مقدمه

بسیاری از مردم به تفاوت دانش و فناوری آشنایی دارند؛ ولی چگونگی دگردیسی دانش به فناوری برای اکثر مردم، حتی بسیاری از متخصصین، شفاف نیست. مهمترین مؤلفه در دگردیسی دانش به فناوری آماده بودن زیرساخت های لازم در جامعه می باشد. لذا، هدف این نوشتار تشریح مراحل علمی و فنی تبدیل دانش به فناوری نیست، زیرا این فرایند در صنایع مختلف تعریف شده و دسترسی به آنها آسان است. برای مثال در صنعت دارو، که بیشتر از هر صنعت دیگری تحت کنترل سازمان های ناظر داخلی و بین المللی می باشد، فرایند ابداع یک ملکول جدید

تا رسیدن آن به پیشخوان داروخانه بعنوان دارو شامل چندین مرحله دگردیسی دانش به فناوری است که هر مرحله در این فرایند طولانی تعریف شده است. این فرایند با بررسی و شناخت جامع بیماری در سطح ملکولی آغاز و منجر به طراحی ملکولی با مدل سازی تئوری و متعاقبا منجر به سنتز انبوه ملکول های دارای خواص مورد نظر با استفاده از روش های شسیمی ترکیبی می گردد. سپس ملکول های برگزیده شناسایی شده و خواص فارماکو کاینتیکی و فارماکو داینامیکی آنها در آزمایشگاه شیمی بهینه سازی $^{\circ}$ می گردد و بالاخره فاز شیمی با انتخاب آزمایشگاه شیمی بهینه سازی $^{\circ}$ می گردد و بالاخره فاز شیمی با انتخاب

۱. مدیر عامل صنایع شیمیایی دارویی ارسطو تلفن: ۲۱۸۸۳۳۲۲۷۲ (۲۱-۹۸+)

دورنگار: ۸۲۳۰۶۷۸ (۲۱–۹۸+)

پست الکترونیکی:kkarimian@arasto.com

- 2. In Silico
- 3. Pharmacophore
- 4. Combinatorial Chemistry
- 5. I vitro lead optimization

بهترین ملکول ها او سنتز آنها پایان می پذیرد. فاز پیش کلینیکی ابا استفاده از ۲ مدل جانوری (معمولایک جونده و یک یستاندار دیگر) آغاز مي شـود وشامل بهينه سـازي خواص ملكول هاي انتخاب شده در مدل های جانوری می باشد. در صورت مثبت بودن نتایج، هیاتی متشکل از دانشمندان شرکت دارو سازی، سازمان ناظر بر تولید دارو (برای مثال FDA در امریکا یا EMEA در اروپا) و متخصصین دانشگاهی برای تدوین یروتکل مطالعات کلینیکی فاز های ۱ (ایمنی)، ۲ (اثربخشی) ۳ (ایمنی، عوارض جانبی، تعیین بهترین دوز) و ٤ (جمع آوری اطلاعات پس از ورود به بازار) تشکیل و مطالعات طبق پروتکل مورد توافق آغاز مي گردند[١]. كليه اين مراحل شامل معتبر سازي فرايند ها طبق ضوابط كميسيون بين المللي يك دست سازي مي باشد. مراحل مختلف ابداع داروی آنتی سایکوتیک° (اخیرا از طریق سمینار در اینترنت (Webinar) قابل دسترسی است)[۲]. در حال حاضر، هزینه ورود یک داروی جدید از مرحله شیمی تا رسیدن به دکه داروخانه نز دیک به یک میلیارد دلار و زمانبری ان ۱۰ الی ۱۵ سال تخمین زده می شود [۳]. مراحل علمي و فني دگرديسي دانش به فناوري در حوزه هاي دیگر نیز فرایند های شفاف و تعریف شده ای دارند، که ممکن است مانند حوزه دارو با هماهنگی تنگاتنگ با سازمان های ناظر بر آن حوزه

هدف این نوشتار آشنایی با مهم ترین مؤلفه موفقیت در دگردیسی دانش به فناوری ، یعنی زیرساخت های آن می باشد. به این منظور، لازم است ابتدا با اختلافات اصلی در تعاریف پذیرفته شده دانش و فناوری آشنا شویم.

دانش بدلیل کنجکاوی فطری بشر برای دانستن و کوشش او برای دست یابی و طبقه بندی دانسته ها به منظور توضیح و بیان پدیده های جهان هستی بوجود می آید[٤]. لغت Science از ریشه لاتین Scientia به همان معنا (دانش) می باشد[٧-٥].این دانسته ها با آزمون و پیش بینی حاصل گردیده اند و اگرچه که از دیدگاه فلسفی حقیقت مطلق نمی باشند ولی راستی دانسته های حاصل از آزمون و بکار گیری آنها در پیش بینی های علمی بقدری زیاد است که بشر این دانسته ها را معتبر و گیتی شمول میداند.

بسرای مثال نتیجه حاصل ضرب اعداد مختلف مسوارد نامحدودی را بوجود می آورد، و اگرچه امکان راستی آزمایی یک به یک این موارد وجود ندارد، اما به راستی پیش بینی حاصل ضرب اعداد اعتماد کامل وجود دارد[۸]. سئوال اصلی علم "چگونه"[۹] است و نه "چرا"، که سئوال اصلی فلسفه می باشد[\cdot 1).

همچنین، دانش لزوما هدفمند نیست و معمولا بازده ملموس و سریع الوصول برای اجتماع ندارد. به همین دلیل مالکیت دانش در اکثریت

موارد تعریف شده نیست و متعلق به جامعه بشری است و به همین لحاظ دست آورد های دانش در مجلات رشته های مربوط با ذکر کامل جزئیات منتشر می گردند. لذا، آن بخش از دانش که دارای ارزش اقتصادی سریع الوصول می باشد از طریق کسب ثبت اختراع برای ۱۷ الی ۲۱ سال محافظت می شود.

فناوری (تکنولوژی) از ریشه یونانی (Technología) و از دو سسمت (Technología) بمعنای هنر، "اوستا کاری" یا (Techne و Craft) امرمعنای هنر، "اوستا کاری" یا (Dogica (بیش Logica) اگرفته شده است [۷]. اگرچه که اساس فناوری همانند دانش دانسته های حاصل از آزمون و پیش بینی است، اما فناوری بدلیل نیاز های مقطعی بشر بوجود می آید. لذا، فناوری هدفمند است، بازده ملموس و سریع الوصول داشته و بدلیل ارزش اقتصادی، مالکیت آن از نیمه قرن شانزدهم با قوانین بین المللی ثبت اختراع محافظت می شود [۱۲-۱۱]. برای مثال در مقطع زمانی ۱۳۰۰–۱۵۵۱ میلادی تعداد ۲۱ اختراع در انگلستان به ثبت رسید [۱۳].

اگرچه که پایه مشترک دانش و فناوری دانسته های حاصل از ازمون و پیش بینی می باشند، اما رابطه قابل اندازه گیری این دو در جوامع مختلف متفاوت و قائم بر ساختار فرهنگ اجتماعی، اقتصادی و توسعه سیاسی هر جامعه بوده و با واقعیت های موجود آن جامعه تعریف می شود [12]. بعنوان مثال، اتحاد جماهیر شوروی از پیشرفت قابل ملاحظه ای در دانش بهره مند بود ولی در زمینه فناوری بسیار عقب تر از حریفان غربی خود بود.

این اختلاف فاحش حتی ۲۰ سال پس از فروپاشی شوروی کاملا مشهود است. فعالیت های دانش محور آن کشور تا حد زیادی در چارچوب آرمان گرایی و به منظور توجیه ایدئولوژی سیاسی آن کشور انجام می گردید و ارتباط کمتری با نیاز های جامعه ان روز شوروی یا بازار جهانی داشت. به همین لحاظ، در حالی که بخش عمده ای از امکانات علمی، صنعتی و اقتصادی اتحاد جماهیر شوروی برای مسابقه در فضا با غرب هزینه می گردید، نیاز های واقعی جامعه آن کشور افزایش بازده محصولات کشاورزی و انواع کالا های مصرفی مورد نیاز مردم بود. از طرف دیگر، فعا لیت های دانش محور در غرب با نگاه مستمر و عمیق به کسب و کارو قائم بر نیاز های جامعه و بازار سرمایه انجام می گردید.

نتیجه این که، با وجود توان علمی بالای آن کشور، از انقلاب اکتبر ۱۹۱۷ تا کنون داروی جدیدی در اتحاد جماهیر شوروی سابق یا روسیه امروز کشف نگردید[۱۵].در حالی که تمامی داروهای مورد مصرف جهان در مراکز پژوهشی صنعتی یا دانشگاهی کشور های غربی کشف و راهی بازار شده و تریلیون ها دلار در آمد برای کشور ها غربی ایجاد نموده است.

^{1.} Potential Drug Candidates

^{2.} Preclinical Studies

^{3.} In Vivo Lead Optimization

^{4.} ICH = International Commission on Harmonization

^{5.} Geodone Ziprasidone

لذا، پیشرفت در دانش مؤلفه لازم، ولی نا کافی، برای پیشرفت در فناوری می باشد و تخصیص منابع انسانی، اقتصادی و صنعتی به پیشرفت در فناوری های قابل استفاده هر جامعه قائم بر ساختار فرهنگ اجتماعی، اقتصادی و توسعه سیاسی آن می باشد.

به همین لحاظ، برای دریافت چگونگی دگردیسی دانش به فناوری در هر جامعه لازم است با ساختار فرهنگ اجتماعی، اقتصادی و توسعه سیاسی جامعه آشنا باشیم. برای مثال در حوزه نظام سلامت و دارو، در حالی که یکی نیاز جوامع غربی ابداع و تولید داروهای جلوگیری کننده از تحلیل رفتن بافت های عصبی ، مانند بیماری الزایمر یا پارکینسون می باشد[۲۱] نیاز اصلی کشور های توسعه نیافته و در حال توسعه کماکان تولید داروهای مهار کننده انواع عفونت ها می باشد. بیماری مالاریا در کشور های پیشرفته و در حال توسعه مطرح باشد. بیماری مالاریا در کشور های پیشرفته و در حال توسعه مطرح نیست ولی کماکان سالیانه جان ۲،۷ میلیون نفر را در کشورهای غیر پیشرفته می گیرد [۲] .

شناخت زیر ساخت های فرهنگ اجتماعی، اقتصادی و توسعه سیاسی قدم اول در ترسیم نقشه راه منطقی برای آسان سازی دگردیسی دانش به فناوری کاربردی درجامعه می باشد و با بررسی تاریخ معاصر می توان به دلایل وضعیت موجود این سه مؤلفه مهم در جامعه پی برد [۱۷-۱۳]. به همین لحاظ، شاید مقایسه دو مقطع تاریخی نسبتا اخیر کشورمان با کشور انگلستان تا حدودی بیانگر اختلاف ما با کشور های توسعه یافته باشد. در سال ۹۹۵ شمسی (۱۲۱۵ میلادی) مولانا جلاالدین رومی بدلیل پیشروی مغول در شرق ایران در حال گریختن از ایران

در همان سال، جان اول پادشاه انگلستان پس از شکست در جنگ داخلی انگلیس، که در آن کشاورزان، کسبه و حتی اکثر اشراف بدلیل بی عدالتی های دربار بر علیه پادشاه شوریده بودند، مجبور به امضای سند Magna Carta گردید که امروزه بعنوان پایه و اساس دمکراسی شناخته می شود[۱۸]. در این سند همه، حتی پادشاه، در برابر قانون یکسان شاخته شده و اصل تاسیس دادگاه های عادل و توانمند و مستقل از سلطنت پذیرفته گردید.

در سال ۱۲۵۰ شمسی (۱۸۷۱ میلادی) قحطی بزرگی سراسر ایران را فرا گرفت. بر اساس آمار منتشره، این قحطی یک سوم تا نیمی از جمعیت ایران را بکام مرگ کشید.

برخی دلیل این قحطی تاریخی را وبای سال قبل می دانند، که به دلیل افتتاح کانال سوئز در سال ۱۲٤۸ شمسی و استفاده مسافران هندی و پاکستانی از راه دریایی بندر انزلی به باکو و سپس راه اهن قفقاز و اسکندریه به بندر سعید برای زیارت عتبات عالیات، نا خواسته این بیماری همه گیر را به خراسان و خطه شمال ایران آورده و باعث

یکی از اندوه بارترین رخدادهای تاریخ کشورمان گردیدند[۱۹]. بدون شک بی توجهی سردمداران آن زمان به وضعیت زندگی و بهداشت رعایا عامل اصلی این فاجعه تاریخی بوده است[۲۰].

جابر انصاری در کتاب تاریخ اصفهان و ری گزارش نموده که در آن سال ها سگ و گربه از گرسنگان در امان نبودند و شایع بود که مردم اموات یهودیان را سرقت نموده و اکل میت می نمودند [11]. در همان سال ویلیام هنری پرکین ۲، کارخانه ساخت رنگینه های خود را بنام Greenford Dye Works در لندن با قیمت بسیار بالایی به فروش رسانید[۲۲]. این کارخانه اولین تولید کننده انبوه رنگینه های بنفش مورد استفاده در صنابع نساجی در دنیا بود که موفقیت تجاری بنفش مورد استفاده در صنابع نساجی در دنیا بود که موفقیت تجاری مورد نیاز صنایع نساجی اروپا گردید. بسیاری از همین کارخانجات اولیه تولید رنگینه های دارو سازی جولید رنگینه ها در اروپا بعد ها تبدیل به شرکت های دارو سازی چند ملیتی امروز شدند [۲۳].

موفقیت پرکین در سال ۱۸۵٦ با سنتز و تولید رنگ بنفش از انیلین، که با قیمتی نازل از قطران ذغال سنگ استحصال می گردید، آغاز گردید. رنگ بنفش از دیر باز بعنوان رنگ اشرافیت شناخته می شد زیرا استحصال آن فقط از نوع خاصی از سخت پوستان دریایی میسر بود و پیچیدگی و تکرار ناپذیری فرایند، قیمت رنگ بنفش آرا بسیار آن از ماده پایه ارزان قیمت انیلین برای اولین بار استفاده از انواع پارچه بنفش برای همه میسر گردید[۲۲]. شایان ذکر است که در نیمه قرن بازچه دنیا را تولید می نمود. پارچه های انگلیسی حتی تا سه دهه پارچه دنیا را تولید می نمود. پارچه های انگلیسی حتی تا سه دهه پیش در ایران از معروفیت خاصی برخوردار بود.

آنچه در بالا آمد اختلاف حالات بین ایران و انگلستان را در تاریخ معاصر اخیر نمایان می سازد. تاریخ کهن تر ما نیز نشان دهنده اختلافات بنیادی در نحوه حکومت، حقوق شهروندی وسیاسی در امپراطوری هخامنشی با قدرت همزمان آن، یعنی یونان، می باشد[۲۵٫۲۶]. بدون شک، با بررسی تاریخ، شناخت درست تری از خود و کاستی هایی فعلی با ریشه های تاریخی پیدا خواهیم نمود و با تشخیص مزیت های نسبی کشورمان خواهیم توانست نقشه راه واقع بینانه تری را برای رفع نارسایی ها و ارتقاء دانش و دگردیسی آن به فناوری های مورد نیاز کشورمان ترسیم نمائیم.

نتایج زیانبار بسته بودن سه مؤلفه فرهنگ اجتماعی، اقتصادی و توسعه سیاسی ممکن است در نگاه اول پنهان بماند. بعنوان مثال، یکی از صدمات پنهان اقتصاد غیر آزاد و دولتی ضایع شدن مالکیت فکری است که با بسته بودن دو مؤلفه دیگر دلیل اصلی خروج نخبگان از

^{1.} Neurodegenerative Diseases

^{2 .}William Henry Perkin

^{3.} Tyrian Purple

کشور های دارای اقتصاد بسته می باشد. به همین لحاظ، خروج مغزها از چین کماکان ادامه داشته و افراد استثنایی آن کشور کماکان زندگی در خارج از چین را ترجیح می دهند، ولی باز شدن نسبی اقتصاد چین تا حدودی با عث کاهش مهاجرت نخبگان گردیده است [۲۷٫۲۳].

پس از انقلاب علمی قرون ۱۲ و انقلاب صنعتی توسعه سیاسی کشور ها رابطه مستقیم با صنعتی شدن آنها داشته است [۲۸,۱۷,۱۳]. شایان توجه است که مؤلفه مشترک در کشور هایی که از قافله دانش وفنآوری عقب مانده اند بسته بودن زیر ساخت های فرهنگ اجتماعی، اقتصادی و عدم توسعه سیاسی می باشد.

در جوامع باز، نیاز جامعه نه تنها تصمیم گیرنده اصلی در ایجاد فنآوری است، بلکه تنظیم کننده قیمت ها از طریق رقابت آزاد نیز می باشد. بدیهی است که فنآوری بهتر باعث ارتقاء کیفیت کالا، کاهش هزینه های تولید و قیمت و پیشی گرفتن دارنده فنآوری برتر بر رقبا در بازار آزاد می گردد. لذا، ارتقاء فناوری لازمه بقای تولید و کوششی مستمر در اقتصادهای غیر دولتی می باشد.

از طرف دیگر، در اقتصاد های دولتی (غیر رقابتی) تصمیم گیرنده اصلی نیاز به فنآوری دولت است که نهایتا منجر به انتخاب طرح ها و سرمایه گذاری در آنها می گردد.

وظایف دولت در جوامع صنعتی پیشرفته عمدتا جنبه راهنمایی و نظارتی دارد و در دهه اخیر حتی صنایع راهبردی مانند مخابرات یا راه آهن نیز به بخش خصوصی واگذار گردیده اند. دسترسی دولت ها به منابع اطلاعاتی و مالی بسیار گسترده می تواند در ارائه رهنمود و تشویق به سرمایه گذاری در بخش هایی که کشور از مزیت نسبی بالا برخوردار می باشد نقش بسیار مهمی را ایفا نماید.

بعنوان مثال، ایران با داشتن منابع عظیم خددادادی نفت و گاز دارای بالاترین مزیت نسبی در صنایع شیمیایی مواد آلی و معدنی می باشد. بعلاوه، آمار موجود نشان دهنده بالاترین درصد انتشار مقالات علمی در شیمی و رشته های وابسته به آن می باشد که نمایانگر شایسته ترین بخش نیروی انسانی کشور است.

هم چنین، بدلیل سابقه یکصد ساله صنعت نفت و پیشرفت هایی که در زمینه های فنی و ساخت ماشین آلات در چند دهه اخیر در ایران حاصل گردیده، کلیه ماشین آلات مورد نیاز صنایع شیمیایی قابل ساخت در کشور هستند. لذا، راهنمایی و تشویق به سرمایه گذاری در صنایع شیمیایی کشور می بایست در صدر برنامه های دولت قرار داشته باشد. با این وجود، ایران کماکان "خام فروش" به حساب آمده و با صادرات نفت خام، معدودی از حلال ها و محصولات پتروشیمی حاصل ازنفت و گاز ارز لازم را جهت واردات مواد شیمیایی با ارزش افزوده بسیار

بالاتر تامین می نماید[۲۹]. بعنوان مثال، حلال تالوئن با قیمت تقریبی کیلویی ۱ دلار به خارج صادر می شود که پس از انجام ۲ واکنش ساده با گاز کلر و سود (که در ایران تولید می شوند)، به شکل بنزیل الکل به کشور وارد می گردد.

مصرف این ماده فقط در صنایع دارویی کشور ۲۱ تن در سال با قیمت متوسط کیلویی ۳۲ دلار است[۳۰]. در صنعت راهبردی مواد موثره دارویی، ۱۰۰٪ مواد میانی و مواد ما قبل نهایی ' به کشور وارد می شوند و سرمایه گذاری، قابل ذکری در زمینه پژوهش و پردازش تولید این مواد در کشور انجام نشده است.

چنان که در بالا اشاره شد، در کشور های پیشرفته صنعتی نیاز جامعه به محصول فناوری را تعریف می نماید و پژوهش و پردازش فقط پس از توجیه سرمایه گذاری لازم برای تولید آن محصول انجام می گردد. قوانین ثبت اختراع حافظ مالکیت فکری و حقوق پژوهشگر و پردازش گر می باشد و با انحصار تولید، پخش و فروش محصول یا فرایند بدست آمده تا مدت زمان تعریف شده ای منبع مالی قابل ملاحظه ای را در اختیار صاحبان پژوهش، پردازش و فناوری می گذارد.

ایسن منابع مالی نه تنها هزینه های پژوهش و پردازش و فناوری ایجاد شده برای تولید کالای مورد نیاز جامعه را جبران می نمایند ، بلکه منابع مالی لازم را برای پژوهش و پردازش کالا یا فرایند بعدی مورد نیاز جامعه را نیز فراهم می کند. بعنوان مثال، افرایش سن متوسط در کشور های توسعه یافته و در حال توسعه منجر به افزایش تعداد سالمندان با بیماری های خاص افراد مسن از جمله آلزایمر گردیده است.

هزینه نگهداری این بیماران بسیار بالا می باشد و در سال ۲۰۰۶ میلیارد دلار گردیده است[۱٦]. لذا، ابداع و تولید داروهایی که از پیشرفت این بیماری جلوگیری نماید، و یا حتی بیماران الزایمر را به حالت طبیعی برگرداند، بازار تضمین شده ای خواهد داشت و به همین لحاظ این موضوع یکی از الویت های پژوهش و پردازش در شرکت های داروسازی چند ملیتی و دانشگاه ها می باشد و سالیانه میلیارد ها دلار در مراکز پژوهشی صنعتی و دانشگاهی در این رابطه هزینه می گردد.

از طرف دیگر، در حالی که بیماری مالاریا سالیانه بیشتر از ۲٬۷ میلیون انسان را بکام مرگ می کشد هیچ یک از شرکت های داروسازی چند ملیتی برنامه جدی را برای ابداع داروهای جدید و موثر برای مداوای مالاریا ندارند. دلیل اصلی امتناع شرکت در سرمایه گذاری در بیماری مالاریا عدم امکان فروش محصول با قیمت های مورد نظر شرکت های چند ملیتی در کشور های فقیری است که با بیماری مالاریا دست به گریبان هستند می باشد. در واقع، مالاریا بعنوان "بیماری فقرا" تشناخته شده است (که کشورهای توسعه شده است (۱۲). با این وجود نباید فراموش نمود که کشورهای توسعه

^{1.} Penultimate Intermediates

^{2.} Poor Man's Disease

یافته کماکان بیشترین سرمایه گذاری را برای مداوای بیماری های مختص به کشور های تو سعه نیافته انجام می دهند.

این سرمایه گذاری توسط شرکت های داروسازی، موسسات خیریه و دولت ها انجام می شود. بخش عمده درآمد شرکت داروسازی چند ملتی Boroughs-Welcome بخصوص در ابداع و تولید انتی ویروس ها، به امور خیریه اختصاص یافته است[۳۲٫۳۱]. از طرف دیگر، سرمایه گذاری کشور های توسعه نیافته و در حال توسعه در ابداع دارو های جدید برای مداوا یا جلوگیری از شیوع بیماریهای مختص به آن کشور ها بسیار ناچیز و در واقع غیر قابل ذکر است.

با در نظر گرفتن رابطه مستقیم موفقیت اقتصادی با باز بودن زیر ساخت های فرهنگ اجتماعی، اقتصادی و توسعه سیاسی، ممکن است در نگاه اول موفقیت های اخیر کشور چین در زمینه های اقتصادی عجیب بنظر برسد. اما، دلیل اصلی این موفقیت ها شرایط ویژه و جایگاه انحصاری آن کشور در جهان امروز می باشد. لذا، باید در مقایسه تطبیقی شرایط آن کشور با دیگر کشور های دارای نظام های بسته با احتیاط عمل شود[۳۳]. پیشرفت های چین متاثر از سرمایه گذاری های انبوه کشور های غربی از اوائل دهه ۷۰ میلادی بدلیل ملاحظات سیاسی ویژه[۲۲] و شرایط ارزان تولید آن کشور می باشد.

اعطای حقوق تولید تحت لیسانس به شعب شرکت های چند ملیتی، تولید محصولات جدید و در حال ثبت اختراع با ارزش افزوده بالا را در کشور چین میسر نموده و صادرات این محصولات به کشور های

غربی باعث رشد چشم گیر اقتصادی آن کشور شده است [۳۵]. چین پر جمعیت ترین کشور دنیا می باشد، لذا تولید کالا همواره می بایست در مقیاس بسیار انبوه انجام شود که منجر به کاهش چشمگیر هزینه های سربار تولید می گردد . مؤلفه های فرهنگ اجتماعی و اقتصادی چین در سال های اخیر با شتاب بسیار بیشتری از مؤلفه توسعه سیاسی به سوی بازار اقتصادی باز 7 می رود [۳۵].

زیر ساخت های فرهنگ اجتماعی و اقتصادی باز و توسعه سیاسی زمینه ساز موفقیت دگر دیسی دانش به فنآوری بوده است. پیام اصلی چنین واقعیتی پیشرفت و رفاه اقتصادی می باشد که با درجه دموکراسی جوامع رابطه مستقیم دارد[۳۷,۳۹,۲۸]. تحت چنین شرایطی، پژوهش و پردازش و دگردیسی دانش به فنآوری بدور از آرمان گرایی و با هدف گیری بازار و برای برآوردن نیاز های واقعی جامعه انجام می شود و طبیعتا از جنبه و ترای و کسب دارای بازده مالی قابل توجیه خواهد بود.

پیشرفت های علمی و صنعتی کشور ما شرایط دگردیسی دانش به فناوری را آماده نموده است. لیکن توفیق در این حوزه و تبدیل توانمندی بالقوه علمی به توانمندی بالفعل فناوری در حد اعلا و رقابت با کشور های صنعتی پیشرفته در گرو باز بودن مؤلفه های فرهنگ اجتماعی و اقتصادی و توسعه سیاسی و توجه به مزیت های نسبی کشور خواهد بود، همان گونه که باز بودن این پیش ساختارها در کشور کوچکی مانند کره جنوبی سطح فناوری آنرا را به مراتب بالاتر از کشور بزرگی مانند چین نگاهداشته، بطوری که فنآوری چین در درجه دوم الی چهارم و هم طراز با ژاین قرار گرفته است.[۳۸ جمری].

^{1.} Low Cost MFG Environment

^{2.} Economy of Scales

^{3.} Market Economy

منابع و مآخذ

[23].http://www.colorantshistory.org/;http://www.medicine.mcgill.ca/mjm/v02n02/aspirin.html;

http://www.nipponkayaku.co.jp/english/company/history/;

[http://www.fundinguniverse.com/company-histories/CibaGeigy-Ltd-Company-History.html;http://en.wikipedia.org/wiki/IG Farben.

http://www.sandoz.com/about_us/sandoz_history.shtml.

http://en.wikipedia.org/wiki/Novartis;http://www.dklevine.com/papers/ip.ch.9.m1004.pdf (drug patent Monopolys)

- [24]. Kriwacwek, P.(2003)."In Search of Zarathustra", Phoneix, Weinenfeld & Nicholson, London, 2003.
- [25]. Holland, T., Persian Fire(2005)." Abacus", Little Brown Book Group, London, 2005.
- [26].http://www.imf.org/external/pubs/ft/fandd/1999/06/carringt.htm
- [27].http://www.chinapost.com.tw/editorial/taiwan-issues/2011/08/17/313670/China driven-brain.htm.
- [28]. Weiner, M.; Huntington, S.P., Editors (1987)." Understanding Political Development", Little Brown Higher Education, 1987.

- [31].http://www.wellcome.ac.uk/About-us/History/WTX051562.htm
- [32].http://www.bwfund.org/pages/59/History/
- [33].Kisinger, H.A.(2011). "On China", Penguin Press, 2011.
- [34].Stalk, G.; Michael, D.(2011)."; What the West Doesn't Get About China", Harvard Bus. Rev., http://webcache.googleusercontent.com/search;
- http://www.haveman.org/EITI07/swenson.pdf
- [35].http://www.cenet.org.cn/userfiles/2009-9-6/20090916234149833.pdf.
- [36].Sirowy, L., Inkeles, A.(2007)." The Effect of Democracy on Economic Growth and Inequality": A Review, Comp. Soci., 6 pp.481-507.
- [37].Shrabani . S., Campbell. N(2007)." Studies of the Effect of Democracy on Corruption", Department of Applied and International Economics, New Zealand.
- [38].http://www.ecosoc.org.au/files/File/TAS/ACE07/presentations%20(pdf)/Saha.pdf.Andrew Ward, Financial Times, December 21, 2003.
- [39].http://www.chinaipr.gov.cn/newsarticle/news/government/201103/1208478_1.html.

- [1].http://www.phrma.org/sites/default/files/159/rd_brochure 022307.pdf;
- http://www.ppdi.com/about_ppd/drug_development.htm:
- [2].www.aldrich.com/aldwebinar
- http://www.nlm.nih.gov/services/ctphases.html;http://clinicaltrials.gov/info/Resources.
- [3].http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2630351/
- [4].Wilson, E., Consilience: The Unity of Knowledge, Vintage Press, New York, 1999.
- [5]. Popper, K., (2002)" The Logic of Scientific Discovery, Routledge Classics, New York.
- [6]. Agassi, J.(2008). "Science and its History: A Reassessment of the Historiography of Science.
- [7].http://en.wikipedia.org/wiki/Merriam-Webster
- [8]. Canfield, V.C.; Donnell, Jr., F.H.; Readings in the Theory of Knowledge, Meredith Publishing Co., New York, 1964, p.239.
- [9].http://evolution.berkeley.edu/evosite/nature/I3basicquestions. shtml.
- [10]. http://simple.wikipedia.org/wiki/Philosophy.
- [11]. Maynard, J.T.; Peters, H.M.('1991)." Understanding Chemical Patents, A Guide for the Inventor", American Chemical Society, Washington D,C., 1991.
- [12].http://www.dklevine.com/papers/ip.ch.9.m1004.pdf
- [13]. Easterlin, R.A.(1999)." Growth Triumphant, The Twenty First Century in Historical Perspective", The University of Michigan Press, Ann Arbor, p. 21,.
- [14].http://en.wikipedia.org/wiki/Social_construction_ of technology
- [15]. Bartfi, T.; Lees, G.V.(2006)." Drug Discovery: from Bedside to Wall Street", Elsevier Academic Press, Burlington MA, USA, 2006, p.69.
- [16]. Heli, H.; Mirtorabi, S.; Karimian, K(2011)." Advances in Iran Chelation: an Update", Expert Opi. Thera. Patents, 2011, 21, 6.
- [17]. http://en.wikipedia.org/wiki/Technology
- [18]. http://en.wikipedia.org/wiki/Magna Carta
- [۱۹]. شوکت .ح (۱۳۸٦)." در تیر رس حادثه، زندگی سیاسی قوام السلطنه. نشر اختران، تهران، ۳٦، ص ۲۵.

[۲۰]. دوگوبینو. کنت "سه سال در ایران"، ص ۹۳. ترجمه جعفر شهری، گوشه ای از تاریخ اجتماعی قدیم تهران ص ۷۵، خاطرات و اسناد. [۲۱]غفاری، م.ع." نایب پیش خدمت باشی (تاریخ غفاری)" به کوشش منصوره اتحادیه (نظام مافی)، سیروس سعد وندیایان ص ۱٤۱.

[۲۲]. انصاری، ج . "تاریخ اصفهان و ری"، ص ٥ و تاریخ اصفهان؛ ص ۲۷٪. تاریخ قم، ص . ٦٠، تاریخ کاشان ص ۲۶.

ناصر يارسا

چكىدە

در ۵۰ سال گذشته، پیشرفتهای قابل توجه ای در شناخت علل بیولوژیکی (ویروسها و باکتری ها)، بیوشیمیایی (مواد شیمیایی)، بیوفیزیکی (اشعه های یونی و غیریونی) سرطان های انسان صورت پذیرفته است. واژه «سرطان» در اینجا به بیش از ۲۷۷ نوع بیمارهای سرطانی گفته می شو د. دانشمندان، مراحل تولید سرطانها را به این شکل تعیین کرده اند که چندین ژن جهش دار در آن ها دخالت دارند. این تغییرهای ژنتیکی باعث از هم گسیخته شدن نظم طبیعی تقسیم و تمایز سلولها می شود. اختلال های ژنتیکی از راه های وارثتی و غیر وارثتی موجب تحول های جدیدی در کنترل رشد سلولي مي شوند. چهار گروه از ژن ها كه به طور مكرر ناهنجاري ييدا مي كنند، نقش به سزايي در توليد سلول سرطان بازي مي كنند: آنکوژن ها (ژن های توده زا) که افزایش فعالیت شان باعث رشد غیرقابل کنترل سلول ها می شود، ژن های مهار کننده که فقدان آنها باعث رشد غیرقابل کنترل سلول ها می شود، ژن های ترمیم کننده که در هنگام جهش یافتن قادر به ترمیم ردیف ناقص ژن ها نیستند و ژن هایی که مرگ سلول هایی که در حال سرطان شدن هستند فراهم می کنند. اگر خود این ژن ها جهش پیدا کنند، آن موقع سلول سرطانی می شود. در سلول های سوماتیک(یاخته های پیکری) بدن انسان میلیونها ژن وجود دارد. بعد از پایان پر وژه ژنتیک انسانی در سال ۲۰۰۳ میلادی، مشاهده شد که فقط ۲۳۵۰۰ ژن فعال و جود دارد که ٤٠٠٠٠٠ نوع پروتئين هاي متفاوت را مي سازند. ۹۹/۹٪ ژن ها در همه انسان ها يکسان هستند و فقط ۷۰۱٪ ژن های انسان ها با همدیگر فر ق دارد که باعث گو ناگونی های ظاهری انسان ها می شود. در حدود۹۳ 🗴 سرطان ها زائدهٔ تأثیر های عوامل محیطی است و فقط ۷ ٪ آنها جنبه وراثتی دارد. به کمک پیشرفت های فناوری در بیوانفورماتیک و روش های مولکولی داده های زیادی بدست آمده که در شناخت زود رس بیماری سرطان کمک خواهد کرد و همچنین غربالگری به موقع برای بعضی از سرطان ها کمک موثری در تشخیص زودرس آن می نماید. تأثیرهای داروها را روی بیماری های سرطان می توان مدیریت و حتی عوارض جانبی را پیش بینی کرد. در سال های اخیر ، پژوهش های ژنتیک مولکولی ، اساس مکانیسم تولید سرطان ها را توجیه کرده است. نتیجه نهایی این پژوهش های مولکولی این موضوع را مبرهن ساخت که سرطان ها جزء بیماری های ژنتیکی هستند.

واژگان کلیدی: ترکیب های سرطانزای بیولوژیکی، تغییرهای مولکولی، ژن های کلیدی ، سرطان های انسان.

۱. استاد، مؤسسه ملی بهداشت ، وزارت بهداشت – آمریکا. Email = nzparsa@yahoo.com

مقدمه

بدن انسان بیش از یک صد تریلیون سلول دارد. بجز گلبولهای قرمز خون - همه سلول های بدن هسته دارند که حاوی یک ترکیب ژنتیکی یا وراثتی می باشند. در هر یاخته سوماتیک (پیکری) بدن دارای ٤٦ کروموزوم است که ناقل میلیونها ژن هستند.

در سال ۲۰۰۳ به وسیله طرح پژوهشی ژنوم انسانی تمام ژن های انسان ردیف شناسی شدند که برای اولین بار مشخص شد که فقط ۲۰۰۰۰ ژن فعال در حدود ژن فعال در هسته هر یاخته پیکری است. این ژنهای فعال در حدود ۲۰۰۰۰ نوع پروتئین را برای بدن می سازند که به صورت پروتئین ،آنزیم ، هورمون ، سیتوکین ، مولکول های گیرنده در بدن وجود دارند. این گوناگونی های مولکولی باعث تغییرهایی در ظاهر و داخل بدن انسان می شود. سرطان یک بیماری ژنتیکی است که ۲۷۷ نوع بیماری را شامل می شود. همچنین، در محیط زیست دنیای امروز بیش از یک صد هزار نوع ترکیب های شیمیایی وجود دارد که تنها ۲۰۰۰۰ تا از آنها تولید سرطان می کنند و هنوز ۲۰۰۰۰ از ترکیب های شیمیایی باقیمانده در طبیعت آرمایش نشده اند[۳-۱]. (جدول)

سرطان در نتیجه تقسیم غیرقابل کنترل سلول ها بوجود می آید که در اثر عوامل محیطی و اختلال های ژنتیکی بوجود می آید.. چهار دسته از ژن های کلیدی که در هدایت یاخته های سرطانی نقش دارند، شامل ژن های توده زا (آنکوژن ها)، ژن های مهار کننده توموری، ژن های ترمیم کننده و ژن های مرگ، برنامهریزی شده هستند. چنان چه یک جهش ژنتیکی در آنها تولید شود، یاخته های طبیعی از مسیر خود خارج می شوند و تحت تأثیر جریان های جدید قرار می گیرند که به سوی یاخته های سرطانی شدن پیشرفت می کنند. افزون بر ترکیب های شیمیایی، پر توهای آفتاب، امواج کوتاه و ویروسها و باکتری ها هم در تولید سرطان ها نقش مهمی را دارند. سرطان ها از آغاز پیدایش بشر وجود داشته اند، ولی در چند دهه اخیر، پیشرفتهایی در علوم پزشکی مولکولی رایانه توانسته است که نه تنها علل و ساز و کارهای این بیماری مهلک بررسی شوند، بلکه در تشخیص زودرس و معالجه آن عملکرد بهتری داشته باشند. در حال حاضر، بیش از ۵۰ درصد بیماری های سرطانی معالجه می شوند، به ویژه اگر این بیماری ها در مراحل آغازین تشخیص داده شوند. بیماری های سرطانی با چند روش: جراحی، شیمی درمانی، پر تو درمانی، ایمنو درمانی، ژن درماني و يا تلفيقي از آنها معالجه مي شوند [۱۰-٤].

ىحث

سرطان یک بیماری ژنتیکی است که سرانجام زائده اثرهای عوامل محیطی است. در سال ۲۰۱۰، در جهان بیش از ۲۰۰،۰۰۰ نفر به سرطان دچار شدند و نزدیک به ۷٫۰۰۰,۰۰۰ یعنی ۵۰ ٪ از آنها دچار مرگ شدند. از

سال گذشته، سرطان از نظر مرگ و میر رتبه اول جهانی را داشته است. تا به حال، بیماری های قلب و عروق مقام اول داشتند. بالاترین درصد سرطان ها به ترتیب عبارت است از سرطان شش ، سرطان معده، سرطان روده، سرطان جگر ، سرطان سینه در خانم ها و سرطان پروستات در آقایان . . بالاترین درصد سرطان در کودکان،خون ، مغز و غددلنفاوی است [۱] بالاترين عامل خطرسرطان ازدياد سن است. هر چه سن بالاتر رود، خطر بیشتری و جود دارد که دچار سرطان بشویم به عنوان مثال؛ مردان در ۸۰ سالگی نزدیک به ۷۵ ٪ از مردان سرطان پروستات می گیرند.۹۳ ٪ سرطان ها زائده محیط زیست است، ۳۰٪ از دود سیگار، ۳۵٪ از رژیم غذایی، ۲۵ ٪ از بیماریهای عفونتی و ۱۰ ٪ از پرتوهای یونی و غیریونی [٦ و ٢] سرطان ها به وسيله يک سرى جهش هاى متوالى درژنهاى انسان اتفاق میافتد و هر جهش هم تا حدی تغییرهای نوی را در سلول بوجود می آورد. ترکیب های شیمیایی باعث ایجاد سلولهای سرطانی به نام کارسینوژن می شوند. دود سیگار نزدیک به ٤٠ ترکیب شیمیایی سرطان زا دارد که بیشتر تولید سرطان شش می کنند. در طبیعت بیش از ۱۰۰۰۰ نوع ترکیب شیمیایی وجود دارد که به طور مستقیم یا غیرمستقیم اثرها و صدمه های خود را در ستیوپلاسم و هسته سلول ها وارد میکنند که منجر به اختلال های ژنتیکی می شود و جهش ها را بوجود می آورند. ويروسها و باكترى ها و پرتو هاي گوناگون هم به نوبه خود توليد سر طان های وراثتی می کنند که تعدادشان نزدیک به ۷ ٪کل سرطان ها است. [۷] بافتهای سرطانی به ٦ گروه تقسیم می شوند: خون، غددلنفاوی، ساركوما(بدخيمي ياخته هاي بافت همبندي) ، كارسينوما (بدخيمي ياخته هاي بافت يوششيي) - سلول هاي جنيني - سلول هاي جنسي. سرطان یک بیماری است که روابط و نظم بین سلولی را مختل می کند و باعث نافرمانی ژن های حیاتی و کلیدی می شود. این بینظمی های مولکولی در چرخه تقسیم سلولی اثر دارند و منجر به ناکامی در تمایز یافتن سلول ها می شوند [۱,۱۱–۱,۱۱]. ژن های کلیدی که معیوب می شوند و عملکرد آنها تغییر می کنند، به چهار گروه تقسیم می شوند.

۱- ژن های توده زا:

پروتو آنکوژن ها (ژن های توده زاپیش از جهش) در حالت طبیعی مسئول تنظیم تقسیم و رشد سلول ها می باشند. هنگامی که جهش ژنتیکی پیدا می کنند، به نام آنکوژن نامگذاری می شوند که بیان ژنی آنها خیلی بالاست. تاکنون، بیش از یکصد نوع انکوژن شناسایی شده است. تغییرهای ژنتیکی که موجب تولید آنکوژن ها و اختلال های ژنتیکی می شوند، عبارتند از: ۱ جابجایی کروموزومی مانند ژن Bcr و ژن توده زا Abl در سرطان مزمن خون

۲- جهش نقطه ای ژن ها مانند ژن Ras در سرطان روده بزرگ

- 1. Chromosomal Translocation
- 2. Point Mutation

٣- حذف ژن ها

٤- مانند ژن Erb-B در سرطان سينه خانم ها

۵- تقویت ژن ها مانند ژن N-myc در سرطان سلول های عصبی کودکان

٦- فعاليت الحاقي ژن ها مانند ژن C-myc در سرطان حاد خون

سرطان مزمن خون بیشتر در سنین بالا اتفاق می افتد. شامل تعویض ترکیب ژنتیکی دو کروموزوم ۲۲ و ۹ می باشد که منجر به تولید یک بیومارکر به نام (۹h۱) که در ۹۰ درصد این بیماران دیده می شود که به تشخیص درست نوع بیماری کمک موثری می نماید. اتصال ژن Bcr به ژن توده زا Ablباعث بوجود آمدن ترکیب جدید ژنی می شود که بروتئین بدست آمده و ساخته شده از آن ویژگی Protein Kinase پروتئین بدست آمده و ساخته شده از آن ویژگی Gleevec ادارد. در سال ۱۹۹۰، شکل فضایی و سه بعدی این آنزیم مشخص و داروی Gleevec به وسیله سازمان FDA آمریکا تصویب شد. این دارو، به نام Gleevec یا Marinib یا Gleevec ساین دارو به این روش است که به جایگاه فعال آنزیم مزبور می عمل این دارو به این روش است که به جایگاه فعال آنزیم مزبور می چسبد و باعث جلوگیری از فعالیت این آنزیم می شود که سرانجام منجر به پایان رشد سلول سرطانی می شود. این اولین داروی ضد سرطانی است که تنها آنزیم سلول های سرطانی را هدف قرار می دهد. این دارو هم موثر

بوده است و آنزیم های تولید شده به وسیله ژنهایErb-B و Kit و

EGFR را هدف قرار می دهد[۱۸–۲۲و ۳۹و ۳۹].

۲-ژن های ترمیم کننده:

ژن های ترمیم کننده که به طور طبیعی پروتئین و آنزیمهایی می سازند که ویژگی ترمیم کننده ژن های صدمه دیده را دارند. وقتی که خودشان جهش دار شوند، آن موقع نمی توانند نواقص ژن های دیگر را بازسازی کنند. همه ژن های سلول به طور طبیعی زیر حمله های عوامل محیطی و متابولیکی قرار می گیرند که نتیجه صدمه های پیاپی به این ژن ها نیاز مبرمی نسبت به پروتئین های ترمیم کننده پیدا می کنند. تا کنون، بیش مبرمی نسبت به پروتئین ترمیم کننده شناسایی شده اند که همگی در درست کردن نواقص ژنتیکی سلول ها نقش به سزائی را دارند. بیش از یک میلیون صدمه ژنتیکی سلول ها نقش به سزائی را دارند. بیش از یک این نواقص ترمیم نشود که اگر می شود که اگر می کند و یا به سرطان تبدیل می شود. بهترین مثال ژن ترمیم کننده، ژن می کند و یا به سرطان تبدیل می شود. بهترین مثال ژن ترمیم کننده، ژن پروتئینی می سازد که چندین ویژگی دارد که یکی از این ویژگی ها ودرت درست کردن ژن های معیوب است. این پروتئین حاوی مولکول قدرت درست کردن ژن های معیوب است. این پروتئین حاوی مولکول

Zinc Finger است که بیان ژن های وابسته را کنتـرل می کند. پروتئین های -1-BRCA و -1-RDA می توانند شکستگی های دو DNA را تعمیر نماید. ژن -1-BRCA در هنگام جهش داشتن به تولید و رشد سلول های سرطان در سینه خانم ها به صورت وراثتی نقش موثری دارد. ژن -1-BRCA هم که روی کروموزوم -1-۱۳۹۱ است پروتئینی می سازد که همانند پروتئین -1-BRCA عمل می کند. تا کنون، بیـش از یک هـزار جهش ژنتیکـی در ژن -1-BRCA و -1-BRCA بیـش از یک هـزار جهش ژنتیکـی در ژن -1-BRCA و -1-BRCA شناسایی شده است. ژن -1-BRCA در سال -1-194 توسط دکت کینگ کشف و در سال -1-194 کلون شد-1-20 و -1-20 و -1-20 کشف و در سال -1-194 کلون شد-1-20 و -1-20 و -1-20 و -1-20 و کروموزوم و روم کاروم و کوم کوم کند.

۳-(آپاپتوزیز) یا خودکشی برنامه ریزی شده:

واپسین راه فرار از سرطانی شدن سلول ها، انتخاب مرگ یا خودکشی برنامه ریزی شده است

(Apoptosis) تخریب غشای هسته و سیتوپلاسم سلول و ارگانل ها منجر به قطعه قطعه شدن سلول می شود که به سرعت به وسیله یاخته های بیگانه خوار (فاگوسیت) خورده و از محیط ربوده می شوند. در یک انسان، به طور میانگین هر روز ۲۰ بیلیون سلول با مرگ برنامه ریزی شده می میرند. ازدیاد عمل در مرگ برنامه ریزی شده باعث تحلیل بافت ها می شود و فقدان عمل موجب تولید سلول های سرطانی می شود. عوامل بسیاری سبب تولید این خودکشی سلولی می شوند. توکسین ها، هورمونها، سیتوکین ها، پر توها، گرما، عفونت ویروسی، کمبود اکسیژن، محرومیت غذایی، ازدیاد غلظت کلسیم داخل سلول و نیتریک اکسید ها مهم ترین عوامل به شمارهستند. چندین ژن در تولید مرگ برنامه ریزی شده نقش مهمی را ایفاء کرده اند. از جمله؛ Bcl-XL ,Por ,7-Bcl است.

ژن 1 روی کروموزوم 1 روا دارد که وزن مولکولی پروتئین فعالیت 1 روت کیلودالتون و طولش 1 اسیدآمینه است. این پروتئین فعالیت 1 آن 1 کیلودالتون و طولش 1 را تنظیم می کند. این پروتئین 1 را 1 باعث رهایی 1 Cytochrome C از میتو کندری ها می شود که منجر به فعال شدن کاسپاز 1 و سپس کاسپاز 1 می شود که سرانجام با خودکشی سلول پایان 1 می یابد. پروتئیس 1 1 می تواند هم در بقاء و هم مانع مرگ برنامه ریزی شده نقش بازی کند. همکاری پروتئین های 1

^{1.} Deletion

^{2.} Amplification

^{3 .} Insertional Activation

فسفوریله شدن ژن Akt باعث جلوگیری از عمل Bax می شود و پروتئین Akt باعث فعال شدن مولکول IKKA می شود که این باعث فعالیت مولکول NF-KB می شود که سرانجام منجر به بیان ژن هایی می شود که ضد مرگ برنامه ریزی شده هستند، مانند ژن[-7A-Bcl].

۴- ژن های مهار کننده:

ژن های مهار کننده توموری که نبودشان باعث تقسیم غیرقابل کنترل سلولهای سرطانی می شرود. ژن مهار کننده por روی کروموزوم الا ۱۷۲۹۳۹ قرار دارد. طول این ژن por ۲۰۰۰ که پروتئین بطول ۱۳۹۳ اسید آمینه می سازد. ژن Por که در سال ۱۹۹۳ به نام مولکول سال و ژن نگهبان شناخته شد، به طور طبیعی تقسیم و رشد سلول را زیر نظر کامل دارد. هنگامی که ایر ژن جهش پیدا می کند، باعث تولید یک پروتئین غیر معمولی می شود که نه فقط به کند، باعث تولید یک پروتئین غیر معمولی می شود که نه فقط به فرماندهی این پروتئین انجام وظیفه می کردند، طغیان خواهند کرد و فرماندهی این پروتئین انجام وظیفه می کردند، طغیان خواهند کرد و طبیعی خود خارج می شود و سلول به جهت سرطانی شدن پیشروی می کند. روی این اصل، جهش ژن Por در بیش از ۲۰ درصد بافت می کند. روی این اصل، جهش ژن Por نوع از ژن های مهار کننده تا بحال شناسایی و گزارش شده اند.

وظایف این پروتئین Po۳ در حالت طبیعی، تنظیم تقسیم سلول ها، خودکشی سلول ها، مسن شدن سلول ها، عروق سازی، تمایز یافتن سلول هاو متابولیسم DNA است. بیش از ۲۲۰۰۰ جهش ژنتیکی در ژن po۳ گزارش شده است. بیشتر این جهش ها در ناحیه -DNA binding اتفاق می افتد که باعث می شود ژن های زیر کنترل po۳ونتوانند نسخه برداری نمایند. همکار پروتئین Po۳ با دو پروتئین GT و CDK۱ سلول های سرطانی را در مراحل GY و مم ارتقاء تقسیم سلولی نگه می دارد. پروتئین Po۳، هم مهار کننده و هم ارتقاء کننده سلول های سرطانی است.

پروتئین Pon پس از آسیب های ژن های دیگر به DNA متصل می شود که باعث تحریک ژن WAF۱ می شود. ایسن ژن، پروتئین P۲۱ را می سازد که به پروتئین CDK۲ می چسبد و اجازه ورود P۲۱ به مرحله بعدی تقسیم سلولی را نمی دهد. پروتئین Pon یک ترکیبی از شبکه حوادث مولکولی است که در تولید سلول های سرطانی نقش مهمی را بازی می کند. پروتئین Pon فعال از طرف ترمینال N از دو روش (از روش MAPK پروتئیس و از روش ATM و ATR و LHK

وقتی که Po۳ فسفوریله می شود، خاصیت چسبیدن به MDM۲ را از دست می دهد. پروتئین pint باعث دگرکونی شکل در ساختار Po۳ می شسود که کمک به نبود اتصال Po۳ به MDM۲ می شسود.

وقتی که ژن Po۳ فاقد ضربه های محیطی است، مقدار Po۳ پائین می رود. پروتئین MDM۲ به Po۳ می چسبد که از عملش جلوگیری می کند و آنرا به سیتوپلاسم سلول انتقال می دهد.

عمل ضد سرطان ۲۵۳ از سه مسير انجام پذير است.

۱- پروتئین Po۳ باعث تحریک پروتئین های DNA-repair می شوند که به صدمه های زده شده به ژن ها رسیدگی شود.

۲- پروتئین Po۳ باعث تحریک مرگ برنامه ریزی شده می شود. وقتی
 که سلول های صدمه دیده غیرقابل بازسازی باشند.

۳- پروتئین Po۳ تقسیم سلولی در مرحله S/G۱ نگه می دارد تا فرصتی برای باز سازی باشد.

دو داروی Nutlin و Tenovix محافظ پویائی Por می باشند که سرانجام جلوگیری از رشد سلول های سرطانی است. اولین بار در سل سال ۱۹۹۲ ژن درمانی با استفاده از ژن Por در یک Retrovirus حامل کننده انجام شد. این ویروس های حامل ژن نرمال Por، در محل سلول های سرطان شش تزریق شد و این آزمون های بالینی تا مرحله سوم پیشرفت، ولی متاسفانه سازمان FDA آمریکا آنرا تصویب نکرد. بنابراین، در حال حاضر این آزمون ها در کشور چین انجام می گیرد. وظایف پروتئین Por در هسته سلول مشخص است، ولی هنوز در سیتوپلاسم به طورکامل مشخص و مطالعه نشده است.

تعداد بیمارهای سرطانی سال به سال بالاتر رفته است و این خود یک معضل پزشکی است، نه فقط از نظر بهداشت و درمان کفایت نمی کند، بلکه از نظر اقتصادی می تواند کشورها را تا مرز ورشکستگی اقتصادی پیش ببرد.

١- جمعيت جهان بالاتر رفته است.

 ۲-سن جمعیت جهان هم بالاتر رفته است هر چه سن بالاتر شود خطر سرطان بیشتر است.

۳- فناوری و رادیولوژی تشخیص بهتر در دسترس داریم.

کاودگی محیط زیست و نبود رعایت رژیمهای غذایی بی گمان
 تأثیرهای منفی خود را دارد.

سرطان به وسیله آسیب های جسمانی تولید نمیشوند. سرطان مُسری نیست. بعضی از مردم نسبت به ابتلای بدنشان به سرطان ها حساسترندتا دیگران. [۲۷و ۶۶]. از زمانی که اولین جهش در ژن ها بوجود می آید تا زمانی که به یک توده سرطانی تبدیل می شود نزدیک به ۷ سال طول می کشد.

در جدول (۱) نمونه هایسی از ترکیب های شیمیایی و باکتری ها و ویروسها که تولید سرطان می کنند، مشهده می شود. [Γ وVو Λ] از پیشرفت سلول های سرطانی دارای یک فرمول ویژه است که کم کم در این Vسال اتفاق می افتد. یاخته های سرطانی اینویسیو سلول های متاستاز شده در هر مرحله یک ژن معین توده زا یا ژن های ضد توموری (آنتی آنکوژن) یا ژن های ترمیم کننده می تواند جهش پیدا کند تا این سلول ها

سرطانی شوند[۲و۳].اگر سرطان ها در مراحل اول تشخیص داده شوند، به طور کامل قابل معالجه هستند و اگر در مراحل دوم تشخیص داده شوند، نزدیک به ۷۰ ٪ بخت بهبودی را دارند و اگر در مراحل سوم تشخیص داده شوند، نزدیک به ۳۰٪ بخت بهبودی را دارند و اگر سرطان تشخیص داده شوند، نزدیک به ۳۰٪ بخت بهبودی را دارند و اگر سرطان تشخیص داده شده در مرحله چهارم است که به طور طبیعی به بافت های دیگر گسترده شده است که بخت بهبودی نزدیک به ۰٪ است که ۰ سال ادامه زندگی داشته باشد.

از چند روش این بیمارها بهبود می یابند. جراحی ، شیمی درمانی ، پر تو درمانی ، ایمنو درمانی ، و ژن درمانی که همان پیوند مغز استخوان است. همه این روشهای درمانی عوارض جانبی خود را روی دیگر بافتهای سالم بدن دارد[۱۹۷۷] .

بسیاری از عوامل محیطی که تولید سرطان میکنند، قابل پیشگیری هستند مانند؛ سیگار کشیدن ، نوشابه های الکلی ، هوای آلوده ، رژیم غذایی ناسالم ، عدم تحرک و بیماری های عفونی . در صورتی که از دیاد سن و ژنتیک خانوادگی قابل دگرگونی و جلوگیری نیست. پژوهش ها در سرطان شناسی امروزه به ما کمک کرده است که نه فقط عملکرد بیماری سرطان را بهتر بفهمیم، بلکه بهترین راه حل بهبود این بیمارها را فراهم سازیم.

نتیجه گیری

در سه دهه گذشته، پژوهشگران داده های زیادی را درباره ژن ها و پروتئین ها و نقش آنها در تولید سلولهای طبیعی و سرطانی گزارش کرده اند. یکی از اکتشاف های مهم آنها، نقش ژن های جهش یافته در تولید سلول های سرطانی بوده است. عوامل محیطی که باعث جهش های ژنتیکی می شوند، در حال شناسایی هستند. با کمک روش های گوناگون مولکولی میکرواری و طیف سنجی جرمی می توان قدرت بیان ژن ها و پروتئین های معیوب را تعیین نمود. حتی پیدا کردن بیومارکرهای نوین که شاخص یکنوع سرطان هستند.

شناسایی همه عوامل محیطی و ژن های کلیدی یک نقشه جامعه از محیط و سلول به ما می دهد که بکوشیم تا از سه روش پاکیزگی محیط زیست، ژن درمانی و دارو درمانی از رشد و پیشرفت این بیماری کشنده جلوگیری نمائیم.

جدول ۱: عوامل محیطی سرطان زا

Carcinogens	Cancer sites	Occupational Sources	
1.Arsenic	Lungs, Skin	Electricians, Smeltors, Medications.	
2.Asbestos	Mesothelioma, Lungs	Roof and floor tiles.	
3.Benzene	Blood and lymph nodes	Petroleum, painting, detergent, rubber.	
4.Beryllium	Lungs	Missile fuel, Nuclear reactor.	
5.Cadmium	Prostate	Battery, painting and coating, phosphors.	
6.Chromium	Lung	Preservatives, pigments, paints.	
7.Ethylene oxide	Blood	Ripening agent for fruits, Rocket gases.	
8.Nickel	Nose, Lungs	Battery, Ceramics, Ferrous alloys.	
9.Radon	Lung	Uranium decay, Mines, Cellars. Refrigerator, glues air pollution	
10.Vinyl chloride	Liver		
11.Smoke	Lungs, Colon		
12.Gasoline	Lung, Blood	Oil petroleum	
3.Formaldehyde	Nose, Pharynx	Hospital/laboratory workers. Hairdresser and barber.	
14.Hair dyes	Bladder		
15.Soot	Skin	Chimney cleaners.	
16.Ionizing radiation	Bone marrow	Radiology technician.	
17.Hepatic virus- B,C	Liver	Hospital workers, drug users.	
18.HPV/Herpes viruses	Cervix, skin, head/neck	Multiple sexual partners.	
20.Epstein Barr virus	Lymph node	Black people in South Africa.	
21.Helicobacteria pylori	Stomach	People with chronic bacteria infection.	

- [14]. Offit K, Parsa N, Jhanwar SC, Filippa DA, et al. (1992)." Denotes a Subset of Low to Intermediate Grade B-cell Non-Hodgkin's Lymphoma". Journal of the American Society of Hematology(Blood). No. 80, pp.45-60.
- [15]. Parsa N, Gaidano G, Mukherjee, AB, Hauptschein RS, et al.(1994). "Cytogenetic and Molecular Analysis of 6q Deletions in Burkitt's Lymphoma Cell Lines". Journal of Genes, Chromosomes & Cancer. No. 9, pp. 13-18.
- [16]. Papanicolaou, GJ, Parsa N, Meltzer PS, Trent JM(1997). "Assignments of Interferon Gama Receptor(INFGR1) to Human Chromosome Bands" 6q24.1---→q24.2 by Fluorescent In Situ hybridization". Journal of Cytogenetics and Cell Genetics. 1997; 76: 181-182.
- [17]. Cigudosa JC, Parsa N, Louie DC, Filippa DA, Mitlema F, Chaganti RSK(1999). Cytogenetic Analysis of 363 Consecutively Ascertained Diffuse Large B-cell Lymphomas. Journal of Genes, chromosoma & Cancer". No. 25, pp.123-133.
- [18]. Shtivelman E, Lifshitz B, Gale RP, Canaani E.(1985)." Fused Transcript of abl and bcr Genes in Chronic Myelogenous Leukemia. Nature No.315, pp.550-554.
- [19].Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and Safety of a Specific Inhibitor of the BCR-ABL Tyrosine Kinase in Chronic Myeloid Leukemia. N Engl J Med 2001;344:1031-1037.
- [20]. Joensuu H, Dimitrijevic S. Tyrosine Kinase Inhibitor Imatinib (STI571) As An Anticancer Agent for Solid Tumours. Ann Med 2001;33:451-455.
- [21]. King CR, Kraus MH, Aaronson SA.(1985)" Amplification of a Novel v-erbB-Related Gene in a Human Mammary Carcinoma". Science;229: 974-976.
- [22]. Heinrich MC, Blanke CD, Druker BJ, Corless CL.(2002). Inhibition of KIT Tyrosine Kinase Activity: A Novel Molecular Approach to the Treatment of KIT-Positive Malignancies. J Clin Oncol 2002;20:1692-1703.
- [23]. Wei, Qingyi; Lei Li, David Chen (2007). DNA Repair, Genetic Instability, and Cancer. World Scientific. ISBN 981-270-014-5.
- [24]. Hogervorst FB. et al. (2003). "Large Genomic Deletions and Duplications in the BRCA1 Gene Identified by a Novel Quantitative Method". Cancer Res. Vol.63, No.7,pp. 1449–1453.

منابع و مآخذ

- [1]. Scotto J, Fears TR, Fraumeni Jr(1996) "Solar Radiation. In: Schottenfeld D, Fraumeni JF Jr, eds: Cancer Epidemiology and Prevention. 2nd ed. New York, NY: Oxford University Press. PP 355-72.
- [2]. Vogelstein B, Kinzler KW(2004)." Cancer Genes and the Pathways they Control. Nat Med 2004; Vol.10, No.8,pp. 789-99.
- [3]. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM, Bos JL(1988)." Genetic Alterations during Colotectal- Tumor Development. N Engl J Med. No. 319, pp. 525-532.
- [4]. Hanahan D, Weinberg RA(2000)." The Hallmarks of Cancer Cell. No. 100, pp. 57-70.
- [5]. Hanahan D, Weinberg RA(2000)." The Hallmarks of Cancer Cell". Vol.100,No.1, pp.57-70.
- [6]. Sonnenschein C, Soto AM(2008)." Theories of Carcinogenesis: an Emerging perspective. Semi Cancer Biol. Vol. 18No.5, pp. 372-7.
- [7]. Pakin DM(2006)." The Global Health Burden of Infection-Associated Cancers in the years 2002. Int J Cancer. Vol.118, No.12, pp. 3030-44.
- [8]. National RC. Committee to Assess Health Risks from Exposure to Low Levels of Inoizing Radiation(2011)." BEIR VII Phase 2. Washington.
- [9]. Fazel R, Krumholz HM, Wang R, et al. (2009)." Exposure to Low-Dose Ionizing Radiation from Medical Imaging Procedures. N Engl J Med. 2009, Vol.361, No.9, 849-57.
- [10]. William WN Jr, Heymach JV, Kim ES, et al (2009)." Molecular Targets for Cancer Chemoprevention. Nat Rev Drug Discov. Vol.8, No.3,pp. 213-25.
- [11]. Seto M, Honma K, Nakagawa M. (2010). "Diversity of Genome Profiles in Malignant Lymphoma. Cancer Science.No.101, pp. 573-578.
- [12]. Staal SP. Huebner K, Croce CM, Parsa N, et al(1988). "The Akt-1 Proto Oncogene Maps to Human Chromosome 14, Band q32, a Site of Chromosome Rearrangement in some Hematopoietic Neoplasma. Journal of Genomics. No.2, pp. 96-98.
- [13]. Park M, Testa JR, Blair DG, Parsa N, et al. (1988)." Two Rearranged Met Alleles on Chromosome 7 to other Markers Tightly Linked to Cystic Fibrosis. Proceeding of the National Academy of Sciences, USA. No.85pp. 2667-2671.

- antigen to band 17p13". Nature 320 (6057): 84-85.
- [36]. Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991). "p53 mutations in human cancers". Science 253 (5015): 49–53
- [37]. Koshland DE (1993). "Molecule of the Year". Science Vol.262, No.5142, P. 1953.
- [38]. Thomas RK, et al. High-throuphut oncogene mutation profiling in human cancer. Nature Genetics. 2007; 39: 347-351.
- [39]. Weinstein IB, Joe AK.(2006)." Mechanisms of Disease", Oncogene Addiction-Arationale for Molecular Targeting in Cancer Therapy. Nature Clinical Practice Oncology.No. 3, pp.448-457. [40]. Wei Q, Lei L, Chen D. DNA Repair, Genetic Instability and cancer. World scientific. 2007; 270-014. [41]. Thompson CB.(1995)." Apoptosis in the Pathogenesis and Treatment of Disease. Science.; 267(5203): 1456-62. Doi: 10.1126/Science. 7878464. PMID 7878464.
- [42].NagataS.Apoptosis DNA fragmentation. Exp. Cell Res. 2000, Vol. 256No.1,pp. 12-8. Doi: 10.1006/excr. 4834. PMID 10739646.
- [43]. Baak JP, Path FR, Hermsen MA, Meijer G, et al.(2003)." Genomics and Proteomics in Cancer. Eur J Cancer. No. 39,pp. 1199-1215.
- [44]. Scarpa A, Moore PS, Rigaud G, Meenestrina F.(2001)." Genetic in Primary Mediastinal B-cell lymphoma" An Updata. Leukemia & Lymphoma No. 41pp. 47-53.
- [45]. Tachdjian G, Aboura A, Lapierre JM, Viguei F.(2002)." Cytogenetic Analysis from DNA by Comparative Genomic Hybridization. Ann Genet, No. 43, pp. 147-154.
- [46]. Kashiwagi H, Uchida K.(2003)." Genome-Wide Profiling of Gene Amplification and Deletion in Cancer. Human Cell. No. 13,pp. 135-141.
- [47]. Pollak JR, Perou CM, Alizadeh AA, Eisen MB, et al.(2003)." Genome-Wide Analysis of DNA Copy-Number Changes Using Cdna Microarrays. Nature Genet. No.23pp. 41-46.
- [48].Albertson DG, Pinkel D.(2003)." Genomic Microarrays in Human Genetic Disease and Cancer". Hum Mol Genet.,pp. 145-52.

- [25]. Friedenson B (2010). "A Theory that Explains the Tissue Specificity of BRCA1/2 Related and Other Hereditary Cancers". Journal of Medicine and Medical Sciences Vol. 1, No.8, 372–384.
- [26]. Tonin, PN; Serova, O; Lenoir, G; Lynch, H; Durocher, F; Simard, J; Morgan, K; Narod, S. (1995). "BRCA1 Mutations in Ashkenazi Jewish Women". American Journal of Human Genetics Vol.57, No. 1,p. 189.
- [27]. Narod, SA; Foulkes, WD. (2004). "BRCA1 and BRCA2: 1994 and Beyond". Nature Reviews on Cancer Vol.4, No.9,pp. 665–676.
- [28]. Fesik SW, Shi Y. (2001). "Controlling the Caspases". Science Vol.294,pp. 1477–1478.
- [29]. Murphy KM, Ranganathan V, Farnsworth ML, Kavallaris M, Lock RB (2000). "Bcl-2 Inhibits Bax Translocation from Cytosol to Mitochondria during Drug-Induced Apoptosis of Human Tumor Cells". Cell Death Differ. Vol., No.1,pp. 102–111.
- [30]. Santos A. Susin; Daugas, E; Ravagnan, L; Samejima, K; Zamzami, N; Loeffler, M; Costantini, P; Ferri, KF et al. (2000). "Two Distinct Pathways Leading to Nuclear Apoptosis". Journal of Experimental Medicine Vol.192, No. 4, pp. 571–580.
- [31]. Zhou, G. P. & Doctor, K. (2003). "Subcellular Location Prediction of Apoptosis Proteins. PROTEINS": Structure, Function, and Genetics No.50, pp. 44-48.
- [32]. Matlashewski G, Lamb P, Pim D, Peacock J, Crawford L, Benchimol S. "Isolation and Characterization of a Human p53 cDNA Clone: Expression of the Human P53 Gene". EMBO J. Vol.3, No13.pp. 3257–3262.
- [33]. May, P. and May, E. (1999). "Twenty Years of p53 Research: Structural and Functional Aspects of the p53 Protein". Oncogene, No.18, pp. 7621–7636.
- [34]. McBride OW, Merry D, Givol D (1986). "The Gene for Human p53 Cellular Tumor Antigen is Located on Chromosome 17 Short Arm (17p13)". Proc. Natl. Acad. Sci. U.S.A. 83 (1): 130–134.
- [35]. Isobe M, Emanuel BS, Givol D, Oren M, Croce CM (1986). "Localization of gene for human p53 tumour

نقش شیر شتر و ملکول های زیست فعال آن در درمان بیماری ها

امیر نیاسری نسلجی *۱، هاجر عربه۱۱، امان بی بی اتک پور۱، مریم سلامی۲، علی اکبر موسوی موحدی۲

چکیده

محصولات غذائی طبیعی فاقد دارو و سموم مختلف و دارای خواص درمانی، مورد توجه مصرف کنندگان در سراسر جهان قرار گرفته است. در این میان شیر شتر تنها به عنوان یک غذا محسوب نشده بلکه محصولی شفا بخش است که می تواند در کمک به درمان بیماری های خاص مورد توجه قرار گیرد. وجود آنتی بادی های ویژه با قابلیت نفوذ قابل توجه به بافت های سرطانی، وجود مقادیر متنابع ماده شبه انسولین (که در درمان دیابت موثر است) وجود پپتیدهای فعال زیستی بدست آمده از پروتئین های مختلف شیر شتر با قابلیت آنتی اکسیدانتی، آنتی میکروبی و کاهندگی فشار خون و شباهت بی بدلیل شیر شتر به شیر انسان از ویژگی های مهم این شیر محسوب می شود. یکی از دلائل آن فقدان پروتئین آلرژی دای بتا لاکتوگلوبولین سبب بروز آلرژی های غذائی در نوزادان انسان می گردد. شیر شتر فاقد بتا لاکتوگلوبولین بوده و از این نظر مشابه شیر انسان است که قابلیت جایگزینی آن با شیر مادر را دارد. این خواص تنها بخش ناچیزی از ویژگی های به مصول الهی بشمار می رود.

واژگان کلیدی: شتر، شیر شتر، خواص درمانی، پپتیدهای فعال زیستی.

^{*.} عهده دار مكاتبات، استاد. تلفن: ٦١١١٧١٣٦ (٩٨٢١)، پست الكترونيكي: niasari@ut.ac.ir

۱. گروه علوم درمانگاهی، دانشکده دامپزشکی، دانشگاه تهران.

۲. مرکز تحقیقات بیوشیمی و بیو فیزیک، دانشگاه تهران.

مقدمه

بر اساس آمار منتشره توسط سازمان خواروبار جهانی در سال ۲۰۰۸، از جمعیت ۲٤,٦٦٤,٢٢٨ نفري شتر در جهان بیشترین جمعیت شتر در قاره آفریقا (۲۰٬۹٥۹٬۰۱۵ نفر، ۸۵ درصد) و تنها ۸۲۲٬۵۷۰ نفر شتر (۳ درصد) در کشورهای حاشیه خلیج فارس و دریای عمان قرار داشته که از این تعداد تنها ۱۵۲٬۰۰۰ (۲/۱ درصد) به ایران اختصاص دارد [۱]. لذا این تفکر که شتر متعلق به اعراب بوده و تاثیر این تلقی که حتی در ادبیات ما نیز متجلی گردیده اسـت که "نه شیر شتر و نه دیدار عرب" باید دگر گون شود. البته نقش اعراب در اهلی نمودن شتر یک کوهانه را نمی توان کتمان کرد، هم چنان که نقش ایرانیان در اهلی نمودن شتر دوكوهانه غير قابل انكار است. ولي در هر حال واقعيت اين است كه کشورهای آفریقائی نظیر سومالی، سودان، اتیوپی و نیجر اکثر جمعیت شتر یک کوهانه جهان را به خود اختصاص داده اند. در حالی که اهمیت شتر در کشورهای عربی تا چندی پیش تنها به تفریح و تفاخر خلاصه می شد، شتر در کشورهای آفریقائی نقش حیاتی در معیشت مردم داشته و بدلیل مقاومت بالا به شرایط نامساعد محیطی توانسته است در طول قرن ها در قاره سیاه باقی بماند. در خشکسالی سال ۱۹۷۳ میلادی که منجر به مرگ ۱۵۰۰۰۰ انسان و بسیاری از احشام گردید، ۱۰۰٪ گاوها از بین رفتند و حال آنکه تنها ۳۰-۲۰ درصد شــترها تلف شــدند [۲]. نقش حیاتی شــتر در معیشت مردم قاره ســیاه در حدی بوده است که تصویر شــتر حتی در پول ملی و پاسپورت برخی از این کشورها نظیر اتيويي جاي گرفته است.

جمع آوری و عرضه شیر شتر بصورت بهداشتی سالیان متمادی در برخی از کشورهای آفریقائی نظیر کنیا رایج است. ولی در کشورهای حوزه خليج فارس قدمت صنعتي شدن و عرضه بهداشتي شير شتر تنها به دهه گذشته بر می گردد. سرمایه گذاری های میلیون دلاری کشور امارات متحده عربی برای توسعه صنعت شیر شتر در طول یک دهه گذشته و تلاش آنها برای استاندارد سازی، شناساندن خواص و اخذ مجوز برای صادرات شیر به کشورهای غربی باید توسط مسئولین کشور ما نیز مورد توجه قرار گیرد تا با توجه به توان تولیدی شــتر های شــیری کشور و وجود اقلیم مناسب برای پرورش این دام، با وجود قریب به ۵۰ میلیون هکتار عرصه های قابل چرای شــتر در کشور، شایسته است که توسعه پرورش شتر شیری در دستور کار وزارت جهاد کشاورزی قرار گیرد. امروز شــتر دیگر یک دام درجه ٤ محسوب نمی شود و از نظر سازمان خواربار جهانی شتر و شیر آن محصولی ارزشمند برای دهه های آینده از حیات بشر به شمار می رود. رویکرد جهانی در خصوص مصرف شیر شتر در یی آشنائی با خواص شیر شتر و تغییر نگرش به شیر شتر بعنوان یک دارو و نه تنها یک غذا کشور های غربی را برآن داشته تا علیرغم

عدم بومی بودن این دام در آن کشورها به واردات این گونه دام ها به کشورشان و پرورش آن اقدام نمایند. امروز شعار کشور های پیشرفته علمی این است" غذای انسان باید داور باشد" و انسان سالم نباید در مصرف دارو زیاده روی نماید. بدین منظور، شتر امروز در بین دام های اهلی اهمیت خاصی پیدا کرده و سخن گران سنگ پیامبر مکرم اسلام (ص) نیز که فرمودند "شتر مایه سربلندی صاحبان آن است" مصداق عینی یافته است.

مشخصات ظاهرى شير شتر

شیر شتر سفید، غیر شفاف (مات) و دارای طعم مطبوعی است [۳،٤]. طعم شیر شتر گاهی شوراست[٥].طعم شیر شتر می تواند در اثر نوع تغذیه، میزان دسترسی به آب و تعداد دفعات شیر دوشی تغییر نماید [۸-7].

ترکیبات شیر شتر

ترکیبات شیر شتر در گزارش های مختلف متفاوت است. این اختلاف می تواند در اثـر روش های مختلف آنالیز، منطقه جغرافیایی، فصل، نوع تغذیه، نژاد، مرحله شیردهی، سن و تعداد زایش باشد [۷،۹]. شیر شـتر از نظر میزان بتاکازئین مشابه شیر انسـان است [۱۰]. بالا بودن میزان بتاکازئین در شـیر شـتر سـبب افزایش قابلیت هضم و کاهش آلرژی زائی شـیر شـتر برای کودکان گردیده اسـت که این خود نیز یکی از ویژه گی های منحصر بفرد شیر شتر محسوب می شود [۱۰]. ترکیب آمینواسـیدهای شیر شتر مشابه شیر گاو بوده و تنها اسیدآمینه گلیسین و سیستین در شیر شتر پایین تر است [۱۳-۱۱،۷].

شیر شتر دارای اسیدهای آمینه و اسیدهای چرب مورد نیاز انسان است [18.10]. چربی شیر شتر شامل مقدار کمی اسیدهای چرب با زنجیره کوتاه و مقدار کمی کاروتن است که این مقدار کم کاروتن می تواند دلیل سفیدی رنگ شیر شتر باشد [17]. شیر شتر حاوی ویتامین های متنوعی از جمله [17] [10]

شبوهی از جمعه ۱۹۰۱ (۱۰ است و می تواند در مناطق بیابانی، شبیر شتر سرشار از ویتامین C است و می تواند در مناطق بیابانی، که دسترسی به سبزی و میوه کم است، منبع مناسبی از این ویتامین محسوب گردد [۱۱٬۱۷٬۱۸]. میزان نیاسین در شیر شتر در مقایسه با شیر گاو بالاتر است [۱۷٬۱۸] میزان ویتامین A و ریبوفلاوین در شیر شستر پایین تر از شیر گاو است [۱۱٬۱۲٬۱۷] غلظت اسید پانتوتنیک، اسید فولیک و B۱۲ در شیر شتر بسیار بالاتر از شیر گاو است [۱۸]. غلظت تیامین و پیریدوکسین در شیر شتر قابل مقایسه با میزان آن در شیر گاو است [۱۷٬۱۸]. غلظت آن در شیر گاو است [۱۱].

١. الابل، عز لاهلها.

نقش شیر شتر و ملکول های زیست فعال آن در درمان بیماری ها

میزان کلسیم، منیزیم، فسفر، پتاسیم و کبالت در شیر شتر بیشتر از شسیر انسان است ولی میزان لاکتوز و عنصر روی در شیر شتر کمتر از شیر انسان می باشد [۱٤]. بهمین دلیل افرادی که مبتلا به عارضه عدم تحمل لاکتوز هستند می توانند از شیر شتر بدون مشکل استفاده نمایند. شیر شتر منبع غنی از کلراید است[۷].

خواص درمانی شیر شتر

شیر شتر بدلیل دارا بودن ماده شبه انسولین و مقاوم در برابر اسید معده، در بهبود بیماری دیابت نوع اول موثر است [۲۲-۱۹]. این شیر همچنین بسرای تقویت عضله قلب کودکان و پیشگیری از ابتلا به بسیاری از سرطان ها نیز مفید است[۲۳]. در کمک به درمان استسقاء(آب آوردن شکم)، زردی، سل، آسم، لشمانیوز، مصرف شیر شتر توصیه شده است شکم)، از در کمک به درمان کودکان مبتلا به او تیسم نیز از شیر شتر استفاده شده است [۲۲]. کودکانی که به شیر گاو حساسیت دارند و یا دارای آلرژی غذائی هستند می توانند از شیر شتر بدون مشکل استفاده نمایند [۲۰،۲۱].

در شیر شتر پروتئین ویژه ای وجود دارد که میزان کلسترول خون را کاهش داده و مانع از تصلب شرائین می شود [10]. شیر شتر حاوی مقادیر قابل توجهی از عوامل ضد میکروبی، فاکتورهای رشد، مواد پائین آورنده فشار خون، مواد ضد سرطان، مواد کاهش دهنده کلسترول و آنتی اکسیدان است [۳۰–۲۷].

عواملی نظیر ایمونوگلوبولین ها، لاکتوفرین، لاکتوپراکسیداز، لیزوزیم و گلوکوزامیداز از عوامل ضد میکروبی موجود در شیر شیر شتر بشمار می روند[۲۹:۳۸]. وجود این عوامل ضد میکروبی شاید بتواند مصرف شیر شیر در درمان اسهال های میکروبی و ویروسی را توجیه نماید. شیر شتر از نظر ترکیب و ساختار پروتئینی و در نتیجه خواص آنتی اکسیدان و ضد میکروبی با شیر گاو تفاوت دارد [۳۹:۳۳]. شیر انسان دارای آلفا لاکتالبومین و فاقد بتا لاکتو گلوبولین است. در حالی که شیر گاو دارای آلفا الکتالبومین و بتا لاکتو گلوبولین است. در حالی که شیر گاو دارای

وجود بتا لاکتو گلوبولین سبب بروز آلرژی های غذائی در نوزادان انسان می گردد. ولی شیر شتر فاقد بتا لاکتو گلوبولین بوده و از این نظر مشابه شیر انسان است [۳۸]. بعلاوه آلفا لاکتالبومین یک عامل آنتی اکسیدان بسیار قوی برای نوزاد محسوب می شود که از این منظر نیز اهمیت شیر شتر نسبت به شیر گاو بالاتر است [۳۷]. شباهت های شیر شتر با شیر انسان سبب گردیده تا در سال های اخیر به تهیه شیر خشک نوزادان از شیر شتر توجه خاصی شود.

اکثر خواص درمانی که تا به حال در رابطه با شیر شتر گزارش شده است مربوط به پروتئین های شیر شتر می باشد. مطالعات اخیر نشان می دهد که علاوه بر پروتئین های شیر شتر پپتیدهای فعال زیستی بدست آمده از

آنها نیز دارای خواص درمانی بسیار خوبی می باشند[۳٤]. پپتیدهای فعال زیستی، توالی اسید های آمینه ای هستند که دارای خواص بیولوژیکی و درمانی می باشند و در اثر هیدرولیز پروتئین ها با استفاده از آنزیم های مختلف بدست می آیند[۳۸].

در مطالعات اخیر نقش اکسیژن فعال در بسیاری از بیماری های انسانی از جمله سرطان، پیری زودرس و پوکی استخوان به طور کامل مشخص شده است. اکسیداسیون بیومولکول ها شامل واکنش های زنجیره ای است که در آنها رادیکال های آزاد متعددی دخیل هستند. یکی از راه کارهایی که توجه ویژه ای به آن شده است استفاده از غذاهایی است که در آنها ترکیبات آنتی اکسیدانتی طبیعی موجود است. پپتیدهای فعال زیستی بدست آمده از هیدرولیز شیر شتر دارای فعالیت آنتی اکسیدانتی بیسیار خوبی در مقایسه با سایر ترکیبات آنتی اکسیدانی طبیعی و ساختگی

همچنین با توجه به بالا بودن میزان مرگ ومیر به علت بیماری های قلبی حروقی در دنیا و به ویژه در ایران این ضرورت وجود دارد که ترکیبات طبیعی را وارد سبد غذایی روزانه کرد که خاصیت جلوگیری از افزایش فشار خون را دارا باشند. مطالعات نشان داده است که پپتیدهای فعال زیستی حاصل از پروتئین های شیر شتر دارای قابلیت کنترل فشار خون معادل دارو های موجود در بازار هستند [۳۵].

سیاست گذاری های کشور در امر توسعه صنعت شیر شتر

خوشبختانه در طی سال های اخیر فعالیت های قابل توجهی در شناساندن خواص و تشویق پرورش دهندگان به نگهداری و استحصال شیر شتر و بالاخره عرضه بهداشتی آن در کشور صورت پذیرفته است. در حال حاضر استان گلستان بعنوان استان انتخابی برای جمع آوری و عرضه بهداشتی شیر شتر در نظر گرفته شده است و از مهر ماه سال ۱۳۹۰ عرضه بهداشتی شیر شتر، هر چند در مقیاس کم، در این استان آغاز شده است. امیداست با توجه مسئولین کشور، شاهد توسعه صنعت پرورش و تولید شیر شتر در استان های مستعد دیگر کشور نیز باشیم.

تولید و عرضه شیر شتر در سطح ملی می تواند به افزایش سطح سلامت و بهداشت جامعه، کاهش و کمک به درمان بیماری های صعب العلاج و در نتیجه کاهش هزینه های درمانی بیماران خاص منجر گردد. در همین راستا لازم است تا محققین کشور در خصوص اثرات شناخته شده شیر شتر در درمان بیماری های خاص پژوهش های تکمیلی را انجام داده و نیز استخراج مواد داروئی موجود در شیر شتر و تولید داروهای تجاری از شیر شتر در دستور کار قرار گیرد. با امید آنکه در آینده نه چندان دور، بخشی از درآمد ناخالص ملی کشور از طریق عرضه محصولات بیولوژیک استحصالی از شیر شتر تامین گردد.

- [14]. Shamsia, S. M. (2009)." Nutritional and Therapeutic Properties of Camel and Human Milks". International Journal of Genetics and Molecular Biology No. 1,pp. 52-58.
- [15]. Al haj, O. A., Al Kanhal, H. A. (2010)." Compositional, Technological and Nutritional Aspects of Dromedary Camel Milk". International Dairy Journal No.20,pp. 811-821.
- [16]. Stahl T., Sallmann, H. P., Duehlmeier, R., Wernery, U. (2006)." Selected Vitamins and Fatty Acid Patterns in Dromedary Milk and Colostrums". Journal of Camel Practice and Research No.13,pp. 53-57.
- [17]. Sawaya, W. N., Kalil, J. K, Al-Shalhat, A., Al-Mohammad, H. (1984). "Chemical Composition and Nutritional Quality of Camel Milk". Journal of Food Science No.49, pp. 744-747.
- [18]. Haddadin, M. S. Y., Gammoh, S. I., Robinson, R. K. (2008). "Seasonal Variation in the Chemical Composition of Camel Milk in Jordan". Journal of Dairy Research No.75,No. 8-12.
- [19]. Zagorski, O., Maman, A., Yafee, A., Meisles, A., Van Creveld, C., Yagil, R. (1998)." Insulin in Milk A comparative Study. International Journal of Animal Science No.13, pp.241-244.
- [20]. Agrawal, R.P., Swami, S.C., Beniwal, R., Kochar, D.K., Sahani, M.S., Tuteja, F.C., Ghouri, S.K. (2003). "Effect of Camel Milk on Glycemic Control, Risk Factors and Diabetes Quality of Life in Type-1 Diabetes: a Randomised Prospective Controlled Study". Journal of Camel Practice and Research No.10, pp.45–50.
- [21]. Agrawal, R. P., Beniwal, R., Kochar, D. K., Tuteja, F. C., Ghorui, S. K., Sahani, M. S., Sharma, S. (2005). "Camel Milk as an Adjunct to Insulin Therapy Improves Long-Term Glycemic Control and Reduction in Doses of Insulin in Patients with Type-1 Diabetes: A 1 Year Randomized Controlled Trial". Diabetes Research and Clinical Practice No.68, pp. 176-177.
- [22]. Agrawal, R. P., Budania, S., Sharma, P., Gupta, R., Kochar, D. K. (2007a). "Zero Prevalence of Diabetes in Camel Milk Consuming Raica Community of North-West Rajasthan", India. Diabetes Research and Clinical Practice No.76,pp. 290-296.
- [23]. Magieed, N., A. (2005)." Corrective Effect of Milk Camel on Some Cancer Biomarkers in Blood of Rats Intoxicated with Aflatoxin B1". Journal of the Saudi Chemical Society No.9,pp. 253-263.
- [24]. Shalash, M. R. (1984). "The Production and Uti-

منابع و مآخذ

- [1]. FAO. (2010). "FAO Statistic Division".
- [2]. Morton, R. H. (1984). "Camels for Meat and Milk Production in Sub-Sahara Africa. Journal of Dairy Science Ni.67, pp. 1548-1553.
- [3]. Dilanyan, S. H. (1959)." Utilization of Mares, Ewes, Camels and Yaks' Milk in the USSR. Report Int. Comm. Dairying in Warm Countries. Brussels, Belgium: International Dairy Federation.
- [4]. Yagil, R., Etzion, Z. (1980). "Effect of Drought Condition on the Quality of camel Milk. Journal of Dairy Research No. 47, 159-166.
- [5]. Rao, M. B., R. C. Gupta, et al. (1970). "Camels' milk and milk products. Indian Journal of Dairy Science No.23,pp. 71-78.
- [6]. Farah, Z. (1996). "Camel Milk Properties and Products. St. Gallen, Switzerland: SKAT, Swiss Centre for Developments Cooperation in Technology and Management.
- [7]. Khaskheli, M., Arian, M. A., Chaudhry, S., Soomro, A. H., Qureshi, T. A. (2005). "Physico- Chemical Quality of Camel Milk". Journal of Agriculture and Social Sciences No.2, pp. 164-166.
- [8]. Ayadi, M., Hammadi, M., Khorchani, T., Barmat, A., Atigui, M., Caja, G. (2009). "Effect of Milking Interval and Cisternal Udder Evaluation in Tunisian Maghrebi Dairy Dromedaries (Camelus dromedarius). Journal of Dairy Science No. 92,pp. 1452-1459.
- [9]. Konuspayeva, G., Faye, B., Loiseau, G. (2009). "The Composition of Camel Milk: A Meta-Analysis of the Literature Data". Journal of Food Composition and Analysis No.22 pp. 95-101.
- [10]. EL-Agamy, E. I., Nawar, M., Shamsia, S. M., Awad, S., Haenlein, G. F. W. (2009). "Are Camel Milk Proteins Convenient to the Nutrition of Cow Milk Allergic Children? Small Ruminant Research No.82, pp. 1-6.
- [11]. Farah, D. Z. A. (1992). "Heat Coagulation of Camel Milk. Journal of Dairy Research No.59, pp.229-231.
- [12]. Farah, Z., Streiff, T., Bachmann, M. R. (1989)." Manufacture and Characterization of Camel Milk Butter. Milchwissenschaft 44, 412-414.
- [13]. Mehaia, M. A., Hablas, M. A., Abdel-Rahman, K. M., El-Mougy, S. A. (1995). "Milk Composition of Majaheim, Wadan and Hamra Camels in Saudi Arabia. Food Chemistry No. 52, pp. 115-122.

نقش شیر شتر و ملکول های زیست فعال آن در درمان بیماری ها

No.70, pp.267-271.

- [34]. Salami, M., Moosavi-Movahedi, A. A., Ehsani, M. R., Yousefi, R., Haertle, T., Chobert, J.-M., Razavi, S. H., Henrich, R., Balalaie, S., Ebadi, S. A., Pourtakdoost, S., Niasari-Naslaji, A. (2010). "Improvement of the Antimicrobial and Antioxidant Activities of Camel and Bovine Whey Proteins by Limited Proteolysis". Journal of Agricultural and Food Chemistry No.58, pp. 3297-3302.
- [35]. Heine, W. E., Klein, P. D., Reeds, P. J. (1991). "The Importance of α -Lactalbumin in Infant Nutrition". Journal of Nutrition 121, 277-283.
- [36]. Merin, U., Bernstein, S., Bloch-Damti, A., Yagli, R., van Creveld, C., Lindner, P., Gollop, N. (2001)." A Comparative Study of Milk Serum Proteins in Camel (Camelus dromedarius) and Bovine Colostrum". Livestock Production Science No. 67, pp. 297-301.
- [37]. Lien, E. L. (2003)." Infant Formulas with Increased Concentrations of α -Lactalbumin". The American Journal of Clinical Nutrition No.77, pp.1555S-1558S.
- [38] .Korhonen, H.; Pihlanto, A. (2006) "Bioactive Peptides: Production and Functionality". International Dairy Journal No.16, pp. 945–960. [39]. Salami, M., Moosavi-Movahedi, A.A, Moosavi-Movahedi, F. Ehsani, M.R., Yousefi, R., Farhadi, M., Saboury, S Niasari-Naslaji. Chobert, J.M., Haertle', T. (2011)." Biological Activity of Camel Milk Casein Following Enzymatic Digestion". Journal of Dairy Research Vol. 78 No. 4,pp.71-478.
- [40]. Salami, M., Yousefi, R., Ehsani, M.R., Dalgalarrondo, M., Chobert, J.M., Haertle', T.,Razavi, H., Saboury, A.A., Niasari-Naslaji, A., & Moosavi-Movahedi, A.A. (2008). "Kinetic Characterization of Hydrolysis of Camel and Bovine Milk Proteins by Pancreatic Enzymes". International Dairy Journal No.18, pp. 1097–1102.

- lization of Camel Milk. In W. R.Cockrill (Ed.), The Camelid: An All-Purpose Animal". Uppsala, Sweden: Scandinavian Institute of African Studies. pp. 196-208. [25]. Abdelghadir, W. S., Ahmad, T. K., Dirar, H. A. (1998)." The Traditional Fermented Milk Production of the Sudan". International Journal of Food Microbiology no.44,pp. 1-13.
- [26]. Shabo, Y., Barzel, R., Margoulis, M., Yagil, R. (2005). "Camel Milk for Food Allergies in Children". Immunology and Allergies No.7, pp. 796-798.
- [27]. Fiat, A.-M., Migliore-Samour, D., Jollès, P., Drouet, L., Sollier, C. B. D., Caen, J. (1993)." Biologically Active Peptides from Milk Proteins with Emphasis on Two Examples Concerning Antithrombotic and Immunomodulating Activities". Journal of Dairy Science No.76, pp.301-310.
- [28]. Tirelli, A., DeNoni, I., Reamini, P. (1997). "Bioactive Peptides in Milk Products". The Journal of Food Technology No. 9, pp. 91-98.
- [29].Clare, D. A., Swaisgood, H. E. (2000). "Bioactive Milk Peptides: A Prospectus". Journal of Dairy Science 83: 1187-1195.
- [30].Meisel, H. (2004). "Multifunctional Peptides Encrypted in Milk Proteins". BioFactors No. 21, pp. 55-61.
- [31]. Korhonen, H., Pihlanto, A. (2006)." Bioactive Peptides: Production and Functionality". International Dairy Journal No.16,pp. 945-960.
- [32].Khonuspayeva, G., Faye, B., Loiseau, G., Levieux, D. (2007). "Lactoferrin and Immunoglobulin Contents in Camels Milk (Camelus Bactrianus, Camelus Dromedarius, and Hybrids) from Kazakhstan". Journal of Dairy Science No.90, pp.38-46.
- [33]. EI-Hatmi, H., Girardet, J.-M., Gaillard, J.-L., Yahyaoui, M. H., Attia, H. (2007). "Characterisation of Whey Protein of Camel (Camelus dromedarius) Milk and Colostrum". Small Ruminant Research

سید کاظم علوی پناه * ۱ ، سعید گودرزی مهر ، باهره خاکباز

چکیده

دستیابی به اطلاعات در کوتاه ترین زمان و با کم ترین هزینه از جمله عوامل مهم تاثیر گذار بر تصمیم گیری است. در سال های اخیراستفاده از روش های نوین، کم هزینه و سریع مانند فناوری سنجش از دور، بعلت توانایی در شناسایی پدیده ها همواره مورد توجه متخصین، مدیران و تصمیم گیران بوده است. اطلاعات به دست آمده از ناحیه مادون قرمز حرارتی، کمک زیادی به مطالعه پدیده های مختلف می کند تا آنجا که تغییرات جزئی درجه حرارت ممکن است در تشخیص برخی پدیده ها ویا درک شرایط محیط بسیار راهگشا باشد. در این مقاله سعی شده است تا پیرامون کاربردهای سنجش از دور مادون قرمز حرارتی در حوزه های مختلفی چون هواشناسی و بررسی کیفیت هوا، کیفیت آب، نقشه های زمین شناسی، تجزیه و تحلیل جزیره حرارتی شهر، مطالعه آتشفشان ها، بررسی آلودگی های نفتی، پیش بینی احتمال وقوع زلزله و کاربردهای تصاویر حرارتی در حوزه سلامت، مطالبی ارائه شود که همه گویای کارامدی این فناوری در جامعه است.

واژگان کلیدی: سنجش از دور مادون قرمز حرارتی، شناسایی پدیده ها، زلزله، هواشناسی، جزیره حرارتی،آلودگی های محیطی.

*. استاد، پست الکترونیکی : salavipa@ut.ac.ir ۱.گروه کارتوگرافی، دانشکده جغرافیا، دانشگاه تهران، ایران.

مقدمه

سنجش از دور، علم، هنر و فن جمع آوری اطلاعات درباره یک شئ، ناحیه یا پدیده است که از راه تحلیل داده ها بوسیله ابزارهایی که در تماس مستقیم با شئ، ناحیه و یا پدیده مورد مطالعه نیستند، بدست می آید ودر حالت کلی به دو دسته سنجش از دور حرارتی و انعکاسی تقسیم بندی می گردد. سنجش از دور انعکاسی در اصل به بازتاب طیفی پدیده ها مربوط می شود و خورشید منبع اصلی انرژی آن است. تصاویر این نوع سنجش از دور تنها با وجود نور خورشید قابل تهیه است. اما در سنجش از دور مادون قرمز حرارتی، منبع انرژی خود پدیده ها و اشیاء هستند که در طول روز توسط خورشید گرم شده اند. این شاخه از سنجش از دور، پیرامون پردازش و تفسیر داده ها و تصاویر بدست آمده در ناحیه مادون قرمز حرارتی (TTR) طیف الکترو مغناطیس بحث می کند. در سنجش از دور حرارتی، تشعشع ساطع شده از سطح پدیده اندازه گیری می شود[۱].

امروزه بدلیل اهمیت سنجش از دور حرارتی در مطالعات محیطی، بسیاری از محققان، تحقیقات پایه در زمینه سنجش از دور حرارتی و توسعه فناوری سنجنده ها و کاربرد های جدید داده های حرارتی را ضروری می دانند [۲]. از طرف دیگر دما بعنوان یک کمیت مهم ترمودینامیکی می تواند برای شناسایی ماده و انتقال حرارت استفاده شود [۳]. در حقیقت دما یک اندازه گیری کمی از درجه حرارت یک جسم است و گرما مقدار انرژی است که به دلیل اختلاف دما، بین یک جسم و جسم دیگری که با آن در تماس است، مبادله می شود. از اینرو با توجه به اینکه گرما عامل مهمی در سیستم های بیولوژیکی، فیزیکی و شیمیایی موجود درزمین و فضاست، بنابر این می توان مطرح نمود که شده و مورد بر رسی قرار گیرد [۱].

امروزه عوامل موثر بر روی درجه حرارت سطح زمین، توان تشعشعی و تابش های طیفی در حال مطالعه است، بطوری که حتی تاثیر ذرات معلق گردو غبار در مناطق خشک روی تغییرات درجه حرارت و دیگر شاخص ها توسط برخی از متخصصان بررسی شده است. به این ترتیب کارایی و دقت داده های مادون قرمز حرارتی و استفاده از آنها افزایش چشم گیری خواهد داشت. بطوری که مولفه های بیلان انرژی سطحی شهرها از راه مدل های اقلیمی و طیفی بررسی می شود[٤].

سنجش از دور حرارتی و کاربردهای آن ۱-هواشناسی و کیفیت هوا

فناوری سنجش از دور ماهواره ای، با گسترش دانش هواشناسی توسعه یافته است. بطور معمول جریان هوا در اثر تغییرات دمای هوای سطح

زمین بین مناطق استوایی و قطبین بوجود می آید. از این رو در سنجش از دور حرارتی، در مطالعات سیستم های هوا و ابر ها کاربرد زیادی دارد. پیشرفت علم سنجش از دور ، پیش بینی طوفان های عظیم را میسر ساخته و به دلیل پیش بینی واقعه در چند روز قبل از وقوع ، میسر ساخته و به دلیل پیش بینی واقعه در چند روز قبل از وقوع ، فرصت برای اقدامات لازم فراهم می شود. برای مثال تصاویر ماهواره قرمز حرارتی پیش بینی طوفان بسیار مفید است زیرا با تصاویر مادون قرمز حرارتی (تصاویر حرارتی شبانه و روزانه)، می توان حرکت طوفان ها را رد گیری کرد[۱]. ماهواره های کنونی قابلیت تمرکزبریک منطقه وهمچنین قدرت مانوردرفضا برای بهترین پوشش برای سطح زمین را دارا هستند. در حقیقت با استفاده از این داده های ماهواره ای می توان به اطلاعاتی نظیر موقعیت ابرها، نمودار دما و در نهایت پیش بینی وضعیت هوا برای روزهای آینده دست یافت.

مطالعات پزشکی اخیر نشان می دهد آلودگی ها تاثیرات زیان بخشی بر دستگاه تنفسی بویژه کودکان و افراد مسن دارند. بنابر این پایش مداوم داده های مربوط به آلودگی هوا اهمیت زیادی دارد. اگرچه دستگاه های اندازه گیری آلودگی در شهرهای بزرگ نصب شده اند اما این ایستگاه ها فقط به نقاط معینی از شهر محدود می شود و داده های آن ها پیوستگی مکانی ندارد بنابراین داده های مربوط به کیفیت هوای شهرها، برای همه مناطق دقیق نیستند.

از طرفی مطالعات متعدد نشان می دهد بین آلودگی های هوای شهرها، تغییرات دما، وجود لایه آلوده بر فراز شهرها و داده های ماهواره ای، رابطه معنی داری وجود دارد. از این موضوع می توان نتیجه گرفت که آلودگی می تواند نقش مهمی در الگو و تغییرات دما داشته باشد، که قابل مطالعه از طریق سنجش از دور حرارتی است. وجود لایه آلوده باعث کاهش شفافیت جو شده و کاهش انتقال جوی و کاهش تابش خورشیدی به زمین را به دنبال دارد. بنابراین کاهش تابش خورشیدی، سبب کاهش دمای سطح زمین می شود و در نتیجه تابش سطح زمین کم شده و از کم شده و مقادیر درجه روشنایی طیف حرارتی نیز کمتر شده و از کم شده و منع خروج آن از جو می شود. این اتفاق موجب کاهش دمای ظاهری در زمان افزایش آلودگی خواهد شد[۱] بنابراین مطالعه تغییرات دمایی رخداده با توجه به پیوستگی مکانی داده های حرارتی حاصل از تصاویرماهواره ای می تواند تا حد زیادی وضعیت و کیفیت هوا را مشخص نماید.

۲-کیفیت آب

موارد مهم آلودگی که قابل مطالعه با سنجش از دورند عبارتند از : ۲-۱- شوری

۲-۲-فاضلاب های صنعتی

1.Thermal Infrared Remote Sensing

۲. حسگرهایی که بر روی ماهواره ها نصب می شوند و به تصویر برداری در ناحیه خاصی از طیف الکترومغناطیس می پردازند.

3. Geostationary Operational Environmental Satellites

۲-۳- مواد شیمیایی و صنعتی

۲-٤- رسوبات و مواد معلق در آب ها

با استفاده از داده های ماه واره ای، علاوه بر امکان شناسایی منابع آلوده کننده، می توان به بررسی و مطالعه طغیان آب و آثار زیانبار آن پرداخت. از دیگر کاربردهای داده های سنجش از دور، مطالعه عمق آب یا ژرفاسنجی است، که این عمل توسط تصویر برداری در ناحیه طول موج طیف مرئی یا مادون قرمز امکان پذیر است.

در مطالعات مربوط به آب، علاوه بر کارائی طول موجهای مرئی و مادون قرمز، تصاویر تهیه شده در ناحیه حرارتی طیف الکترومغناطیس نیز کاربرد زیادی دارند، که از جمله کاربردهای آن تعیین دمای سطح دریا و مسائل مربوط به رطوبت خاک و گیاه است. مطالعه دمای سطح دریا به درک حوادث اقلیمی کمک می کند[۱].

٣-زمين شناختي حرارتي

کاربرد تصاویر حرارتی در تهیه نقشه های زمین شناختی بر اساس این واقعیت بنا شده که سنگ های غیر متخلخل، گرما را بهتر از خاک های نرم انتقال می دهند. بنابراین سنگ های سخت غیر متخلخل در شب، گرمای کره زمین را به نسبت بیشتر از پوشش خاکی مناطق اطراف خود انتقال می دهند، در نتیجه در محدوده هایی آنومالی گرمایی بوجود می آید که سنجنده ها می توانند آنها را آشکار کنند. از طرف دیگر سنگ های متخلخل، آنومالی حرارتی یکسانی در تصاویر برداشت شده هنگام شب از خود نشان نمی دهند و در واقع ممکن است بعد از بارندگی در آنها، آنومالی سرد ناشی از رطوبت تولید شود[۱].

۴- تجزیه و تحلیل جزیره حرارتی شهر

جزيره حرارتي در شهرها معمولا ناشي از اين موارد مي باشند:

٤-١- ظرفيت گرمايي بالاي مصالح ساختماني

3-۲- صنایع، وسایل نقلیه و سیستم های گرمازای منازل، مقدار زیادی گرما را به شهر اضافه می کند.

٤-٣- آلو دگي هوا

٤-٤- ساختمان های مرتفع و برج ها، مشکلاتی در تبادل گرما ایجاد م کند[۵]

3-0- جزایر حرارتی شهری علاوه بر عوامل بالا از تخریب جنگل ها و تغییر پوشش سطح زمین به سطوح بدون تبخیر، مانند آسفالت و سنگفرش ناشی می شود[۱].

اطلاعات حرارتی در موارد زیر می توانند استفاده شوند:

الف- مدل رابطه میان رشد شهر، تغییر پوشش زمین و گسترش جزیره حرارتی شهر در طول زمان

ب- مدل رابطه میان رشد شهر و تغییر پوشش سطح زمین و کیفیت هوا در طول زمان

ج- مدل تاثیرات کلی توسعه شهر روی ویژگی های بیلان انرژی سطح شهر شهر

۵–آتشفشان

پوشش مکررمناطق مختلف زمین و دید یکپارچه جهانی ای که ماهیواره مدار قطبی NOAA فراهم کرده است می تواند برای مطالعه بر روی آتشفشان ها حتی در مناطق دور افتاده نیز بسیار مناسب باشد. داده های چند طیفی ماهواره های مدار قطبی را می توان برای تعیین مورفولوژی و هاله های آتشفشانی عمودی و افقی، ردیابی ابر های غبار آلود، مطالعه فوران آتشفشان ها و محاسبه میزان صعود ذرات معلق در فضا، استفاده کرد [۱]. مطالعات سنجش از دور که در گذشته بر روی آتشفشان ها انجام شده، شاخص های متعددی را اندازه گیری کرده است[۲].بنابر این به کمک سنجش از دور می توان پایش آتشفشان را بررسی کرد[۱].

۶ – آلودگی های نفتی

در گذشته محدودیت قدرت تفکیک مکانی ماهواره ها در شناسایی آلودگی های نفتی مشکل ساز بوده است، اما در شرایط فعلی امکان مشاهده و کنترل تراوش نفتی، با استفاده از داده های ماهواره ای وجود دارد. بطور مثال در مورد انفجار چاه نفت در خلیج مکزیک لکه های بزرگ نفتی که در نتیجه ریزش نفت ایجاد شده بود به خوبی در تصاویر حاصل از سنجنده های ماهواره های مختلفی مانند سنجنده های حاصل از سنجنده های مشاهده بودند. در این منطقه از داده های ماهواره ای برای شناسایی منشاء آلودگی نفتی ، استفاده های زیادی شد و معلوم گردید که ریزش نفت در ناحیه فوق زیاد بوده و اثرات شد و معلوم گردید که ریزش نفت در ناحیه فوق زیاد بوده و اثرات محدودیت شناسایی این گونه آلودگی ها می شود، ولی نسل های جدید ماهواره ها این مشکل را حل کرده اند[۱].

٧- پيش بيني زلزله

بطور کلی روش های پیش بینی زلزله در سه گروه زیر طبقه بندی می شوند:

۱-۷ پیش بینی بلند مدت که در بازه زمانی چند ساله تا چند دهه در تغییر است.

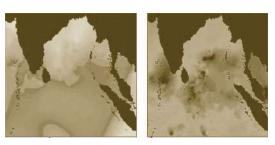
٧--٢ پيش بيني كوتاه مدت كه در بازه چند دقيقه تا چند هفته در تغيير الم

۱. تغییرات ناگهانی و شدید یک پدیده

- 2. National Oceanic and Atmospheric Administration
- 3. Advance Very High Resolution Radiometer
- 4. Coastal Zone Color Scanner

۷-۳- پیش بینی میان مدت که از چند هفته تا چند سال در تغییر است. تا کنون روش ها و پیش نشانگرهای متعددی در پیش بینی زلزله مورد بحث و بررسی قرار گرفته است مانند: آنومالی های حرارتی، فوران زمین گرمایی (یونان، ۲۰۰۱)، تغییرات یونوسفری، هواشناسی، ابر زلزله، رطوبت هوا، تغییر دمای هوا، تغییر پارامترهای فیزیکی آب، تغییر غلظت گاز در آب، تغییر پارامترهای ژئوشیمیائی، تغییر هدایت الکتریکی آب، را می توان ذکر کرد اما در این میان آنومالی های حرارتی و ابر های زلزله مورد توجه بسیاری از محققین زلزله قرار گرفته است[۱].

هــر گونه تغییر در دمای سـطح زمین حاصل شــده از طریق فناوری سنجش از راه دور حرارتی، در نواحی ای که به لحاظ تکتونیکی فعال هستند می تواند نشانه ای برای وقوع زلزله باشد [۷].


در همین راستا ساراف و همکارانش در سال ۲۰۰۷ در مورد سه زلزله مهم ایران شامل: بم (۲۰ دسامبر ۲۰۰۳)، زرند (۲۲ فوریه ۲۰۰۵) و درب آستانه (۳۱ مارث ۲۰۰۳) با استفاده از تصاویر AVHRR و ترا^۲، آنومالی های دمایی را با هدف بررسی روند تغییرات دمای سطح زمین و ارتباط آن با زمان وقوع زلزله، بررسی کردند. در مطالعه فوق بررسی LST در یک دوره زمانی قبل از وقوع زلزله انجام شد که نتایج آن نشان داد که یک آنومالی حرارتی شدید قبل از تمامی این زلزله ها بوقوع ییوسته است[۷].

این مطالعه نشان داد که شدت و گستر دگی مکانی نواحی دارای آنومالی دمایی، بطور مستقیم با قدرت زلزله و بطور معکوس با عمق کانونی زلزله متناسب است[۷].

البته این نکته حائز اهمیت است که آنومالی های حرارتی تنها بعنوان یک داده کمکی می تواند در مورد زلزله حائز اهمیت باشد و بوسیله آنها می توان تا حدودی احتمال وقوع زلزله را پیش بینی نمود.

۸ - کاربرد سنجش از دور حرارتی در حوزه سلامت

یکی از کاربرد های سنجش از دور حرارتی و بررسی تغییرات دمایی در بحث سلامت و بیماری هاست. شکل ۱، تصویر سمت چپ، تصویر شدت تغییرات نسبی بیماری وبا و شیوع آن و تصویر سمت راست، تصویر ماهواره ای در طیف مادون قرمز حرارتی است که برای خلیج بنگال گرفته شده است. همانطور که نتایج این دو تصویر نشان می دهد، همبستگی بسیار زیادی بین شیوع بیماری وبا و دمای سطح آب (SST) وجود دارد؛ هرجا دما افزایش یافته تکثیر این بیماری هم بیشتر شده است. در حقیقت، گرما و تصویرماهواره ای مادون قرمز حرارتی باعث آشکار سازی میزان و یهنه تکثیر این بیماری گشته است[۸].

شکل ۱. کاربرد تصویر مادون قرمز حرارتی در بررسی گسترش بیماری وبا

بسیاری از مطالعات در خصوص طیف های حرارتی و ارتباط آن با از بیماری های واگیردار انجام شده است که در منابع علمی گزارش شده است[۱۳–۹].

نتيجهگيري

از آنجا که رفتارهای تابشی مواد، اطلاعات مهمی درباره ویژگی های آنها ارائه می کند و همچنین میزان انرژی تابش شده از هر ماده تابعی از دمای سطحی آن است، بنابراین مطالعه دمای سطح اجسام با استفاده از تصاویر سنجش از دور مادون قرمز حرارتی می تواند اطلاعات بسیار سودمندی از وضعیت پدیده ها ارائه کند که دستیابی به این مهم از طریق تصاویرماهواره ای با طول موج های پایین تر و غیر حرارتی می تواند در بسیاری از موارد امکان پذیر نباشد.

در حقیقت بررسی کاربردهای مختلف سنجش از دور حرارتی در زمینه های گوناگون، توانایی و کاربردهای این فناوری را بیش از پیش نمایان می سازد و می توان با استفاده از این فناوری بر بسیاری از مشکلات فائق شد.

بنابراین در صورتی که امکانات زیر ساختی آن فراهم گردد با توجه به توانایی های فراوان این فناوری در حوزه های مختلفی چون زلزله، بیماری ها و بسیاری زمینه های دیگر، می تواند در حل بسیاری از مشکلات به عنوان ابزاری سودمند استفاده گردد.

امید است با فراهم شدن امکان تهیه تصاویر ماهواره ای در ناحیه طول مسوج های حرارتی ، با قدرت تفکیک طیفی و مکانی بالاتر، امکان مطالعه دقیق تر بسیاری از پدیده ها فراهم گردد و درنتیجه بتوان مطالعات دقیق تری بروی پدیده ها انجام داد و با اطمینان بیشتری از نتایج آن برای بسیاری از تصمیم های اجرایی در بخش های مختلف بهره مند شد.

۱. تغییر شکل یوسته زمین بر اثر تنشهای وارده در طول دورانهای مختلف زمین شناسی

- 2.Terra
- 3 .Sea Surface Temperature

منابع و مآخذ

Infectious Disease: Use of Remote Sensing for Detection of Vibrio Cholerae by Indirect Measurement". Proc National AcademySciences, No.97, pp.1438-1443.

- [9] .Cross, ER., Newcomb, WW., Tucker, CJ.(1996). "Use of Weather Data and Remote Sensing to Predict the Geographic and Seasonal Distribution of Phlebotomuspaptasi in Southwest Asia". Am J Trop Med Hyg, No.54, pp.530-536.
- [10]. Linthicum, K. J., Bailey, C. L., Tucker, C. J. (1994). Man-Made Ecological Alterations of Senegal River basin on Rift Valley Fever Transmission". Sistema Terra, pp. 45-47.
- [11] .Rogers, D.J., Randolph, SE.(1991). "Mortality Rates and Population Density of Tsetse Flies Correlated with Satellite Imagery". Nature, No. 351, pp. 739-741.
- [12] .Thompson, D.F., Malone, .., Harb, M.(1996). "Bancroftianfilariasis Distribution and Diurnal Temperature Differences in the Southern Nile Delta". Emerg Infect Dis., No. 2. Pp. 234-235.
- [13]. Malone, J.B., Abdel-Rahman, MM., El Bahy, MM., (1997)." Geographic Information Systems and the Distribution of Schistosomamansoni in the Nile Delta". Parasitol Today, No.3, pp.112-119.

- [۱] علوی پناه، س.ک.، (۱۳۸۵). "سنجش از دور حرارتی و کاربرد آن در علوم زمین "، انتشارات دانشگاه تهران، ص ۵۲۲.
- [2]. Tronin, A., Hayakawa, M., Molchanov, O. A., (2000). "Thermal IR satellite Data Application for Earthquake Research in Japan and China", J. Geodyn. No.33, pp.519-534.
- [3] .Norman, J. M., Divakarla, M., Goel, S., (1995). "Algorithms for Extracting Information from Remote Thermal- IR Observations of the Earth Surface", Remote Sensing Environment, No. 51, pp 157-168.
- [4] Tran, H., Uchihma, D., Och, S., Yasuoka, Y.(2006). "Assessment with Satellite Data of the Urban Heat Island Effects in Asian Megacities". International Journal of Applied Earth Observation and Geoinformation, Vol., 8. No. 1, 34-48.
- [۵]. عزیزی، ق.(۱۳۸۳). "تغییر اقلیم، نشــر قومس، ص ۲۷۰". [6]. Campbell, B. A., Garvin, J. B. (1993). "Lava Flow Topographic Measurement for Radar Data Interpretation". Geophysics Res, No. 20, pp.831-834.
- [7]. Saraf, A., Choudhury, S., Panda, S., Dasgupta, S.(2007). "Satellite Based Observations of Pre-Earthquake Transient Thermal Anomalies in Iran", International of Earthquake Engineering and Seismology (IIEES), Vol.14
- [8]. Lobitz, B., Beck, L., Huq, A.(2000). "Climate and

پژوهش و فناوری

انرژی زمین گرمایی و کاربردهای آن

احمد رزاقی ۱

مكيده

در این مقاله انرژی زمین گرمایی به عنوان یکی از انرژی های نو و تجدید پذیر مورد بررسی قرار میگیرد.انرژی های نو از آن جهت اهمیت دارند که جایگزین خوبی برای سوختهای فسیلی می باشند. سوخت های فسیلی باعث آلودگی های زیست محیطی و آلودگی های آب و هوایی شده اند و همچنین تجدید ناپذیر می باشند. ازدیاد جمعیت و نیاز روز افزون بشر به انرژی از دیگر عوامل روی آوردن بشر به انرژی های نو و تجدید پذیراست.

در این مقاله به بیان منشأ انرژی زمین گرمایی و کاربردهای مستقیم و غیر مستقیم آن پرداخته شده است. انرژی زمین گرمایی به صورت مستقیم در استخرهای آب گرم، مراکز گلخانه ای، گرمایش منازل، ذوب برف و پیشگیری از یخبندان و پمپ حرارتی و به صورت غیر مستقیم در نیروگاه های تولید برق استفاده می شود. در این مقاله کشور ایسلند که به عنوان یکی از موفق ترین کشورها در استفاده از انرژی های نو است معرفی می شود، و مناطقی از ایران که می توان از انرژی زمین گرمایی استفاده کرد معرفی می شود. در نهایت یک جمع بندی در مورد انرژی های جایگزین سوختهای فسیلی (انرژیههای نو و تجدید پذیر) و جایگاه آن در ایران و جهان و مزایای استفاده از این سوخت ها بیان شده است.

واژگان کلیـدی: انـرژی زمین گرمایی، انرژی های نـو، کاربردهای انرژی زمین گرمایی در ایران، انرژی های جایگزین سوخت های فسیلی.

a_razzaghi@iasbs.ac.ir . بخش فيزيك، دانشگاه تحميلي دانشگاه علوم يايه زنجان)، يست الكترونيك: a_razzaghi@iasbs.ac.ir

مقدمه

از آغاز دوره صنعتی به این سو، جمعیت جهان از چند صد میلیون نفر به هفت میلیارد نفر رسیده است. الگوی زندگی ساده و مقتصدانه انسان دویست سال پیش به الگوی زندگی جاه طلبانه و مسرفانه انسان سده بیست و یکم تغییر یافته است [۲و۱].

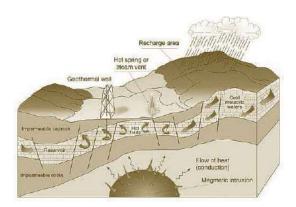
افزایش جمعیت از یک سو و افزایش رفاه اجتماعی از سوی دیگر نیازمند انرژی است. نیاز روز افزون به انرژی باعث شده انسان بیش از پیش به استفاده از سوخت های فسیلی (زغال سنگ، نفت و گاز) روی آورد. ولی محدودیت استفاده از سوخت های فسیلی به خاطر تجدیدناپذیر بودن آن ها و نیز آلودگی هایی که به وجود آورده اند؛ مانند گرم شدن زمین و آب شدن یخ ها و به هم خوردن اکوسیستم طبیعی کره زمین؛ باعث محدودتر شدن استفاده از این منابع انرژی شده است. همچنین نفت و مشتقات آن از سرمایه های ارزشمند ملی و حیاتی کشورهاست. مصرف نابهینه از آنها به دور از خرد است[عوی].

به همین خاطر استفاده از منابع انرژی جایگزین که نامحدود باشند و کمترین آلودگی را به وجود آورند، مورد توجه پژوهشگران و متفکران قرارگرفته است. این منابع که در چند دهه اخیر مورد توجه قرار گرفته و پیشرفت های چشم گیری در دسترسی به آن ها بدست آمده، انرژی های نو و تجدید پذیر نامیده می شوند.

به طورعمده انرژی های نو و تجدید پذیر را در چهار بخش دسته بندی می کنند:

- انرژي خورشيد
- انرژی باد، آب و امواج
 - انرژي زمين گرمايي
- فن آوری هیدروژن، پیل سوختی و زیست توده

در حال حاضر از میان انرژی های تجدید پذیر ، انرژی آب برای تولید برق کم هزینه ترین و انرژی خورشیدی پرهزینه ترین است. استفاده از هر کدام از این انرژی ها بسته به منابع و امکانات محیطی است. در کشور ما ایران با توجه به ویژگی های جغرافیایی و آب و هوایی از اکثر انرژی های نو و تجدید پذیر می توان بهره برداری کرد. یکی از این انرژی ها انرژی درین گرمایی می باشد. در مناطق زلزله خیز و جاهایی که رشته کوه های جوان دارند، می توان بهترین و بزرگ ترین منابع زمین گرمایی را پیدا کرد. در زیر نحوه بهره برداری از انرژی زمین گرمایی و مناطق مساعد برای آن را به اجمال بررسی می کنیم [آوه].


انرژی زمین گرمایی

منبع انرژی زمین گرمایی، حرارت طبیعی زمین است که از مواد مذاب یا ماگما نشأت می گیرد. این انرژی در اثر تجزیه رادیو اکتیو ایزوتوپ پتاسیم و عناصر دیگری که در پوسته زمین پراکنده اند و همچنین به خاطر فشار زیاد حاصل از نیروی وزن ایجاد می شود. به تجربه معلوم شده است هرچه به ژرفای زمین افزوده شود، دما افزایش می یابد. تقریباً به ازای هر ۱۰۰ متر عمق حدود ۳ درجه به دمای زمین اضافه می شود. به طوری که درجه حرارت در لایه های پایینی پوسته زمین حدود ۱۳۰۰ درجه و در هسته مرکزی زمین حدود ۵۰۰۰ درجه است[۷].

در برخی مناطق از پوسته زمین که شرایط مساعدی دارد، می توان به دماهای بالا دست یافته و از این انرژی استفاده کرد. طبق بر آوردهای انجام شده انرژی ذخیره شده در پوسته زمین تا عمق ۲۰۰۰ متر، ۱۰۲٤×۲۶ ژول می باشد. ۸۵ درصد از این انرژی در دمای کمتر از ۱۰۰ درجه است (انرژی مصرفی جهان در سال ۱۹۸۷ برابر ۱۹۸۱×۲۰۳ ژول بود که ٤٠ درصد از آن دارای دمایی کمتر از ۱۰۰ درجه بود) [۹۹].

بیرون کشیدن گرما به طور مستقیم از کره زمین امکان پذیر نیست. برای این کار باید سیال انتقال دهنده ای وجود داشته باشد تا گرما را از زیر زمین به سطح زمین انتقال دهد. در ضمن این گرما باید به سطح زمین نزدیک باشد. معمولاً مناطقی که در آن آتشفشان یا زمین لرزه مستمر وجود دارد، چنین خصوصیاتی دارند. حرارت زیر زمین توسط یک سیال انتقال دهنده که می تواند بخار یا آب داغ و یا هر دو باشد، به سطح زمین

بهره برداری از انرژی زمین گرمایی به طور ساده در شکل ۱ آورده شده است. آب حاصل از بارندگی پس از نفوذ به سفره های زیرزمینی و جاری شدن به مناطقی که انرژی زمین گرمایی نزدیک سطح زمین است، انسرژی گرمایی زمین را دریافت می کند. چگالی این آب پس از گرم شدن کاهش یافته و فشار آن افزایش می یابد و به صورت آب گرم یا بخار آب از منافذی که بر روی پوسته زمین وجود دارد، مسیر خود را به سطح زمین پیدا می کند. این ها همان چشمه های آب گرمی هستند که در مناطق خاصی از سطح زمین مشاهده می کنیم. در این مناطق می توان با حفر چاه هایی با عمق ۸۰ تا ۱۰۰ کیلومتر بخار آبی که دمای آن تا حد داخل زمین بیرون کشید و از انرژی گرمایی آن استفاده کرد.

شكل ا: طرح ساده از يك سيستم زمين گرمايي ايده آل[۱۰].

همان طور که در شکل ۱ مشاهده می شود برای رسیدن به انرژی زمین گرمایی، محیط باید دارای شرایط زمین شناختی ویژه ای باشد، و در هر مکانی نمی توان به انرژی زمین گرمایی دست یافت. برخی از ویژگی های این مناطق به شرح زیر است:

۱. آب به میزان کافی در این مناطق وجود داشته باشد.

 در نزدیکی آب های نفوذ کرده به سفره های زیر زمینی انرژی زمین گرمایی وجود داشته باشد.

۳. منافذ مناسبی بر روی پوسته زمین برای خروج آب های گرم باشد. شکل ۲ مناطقی از ایران که دارای ویژگی های زمین شناختی مناسبی برای رسیدن به این انرژی هستند را نشان می دهد. همانطور که مشاهده می شود در مناطق وسیعی می توان از این انرژی پاک استفاده کرد.

شکل ۲: مناطقی از ایران که انتظار داریم بتوانیم از انرژی زمین گرمایی بهره برداری کنیم[۱۱].

شکل ۳: مناطقی از کره زمین که که در آن مناطق انرژی زمین گرمایی در نزدیکی سطح زمین قابل بهره برداری می باشد[۱۲].

قرن ها پیش از انرژی زمین گرمایی به شیوه های مختلف استفاده می شد. به طوری که رومیان قدیم از آن برای حمام کردن استفاده می کردند. در سال ۱۹۰۶ در ایتالیا برای اولین بار از انرژی زمین گرمایی برای تولید برق به صورت تجاری استفاده شد. سپس در سال ۱۹۵۸ نیروگاه زمین گرمایی و ایراکی در زلاندنو و به دنبال آن در دهه ۱۹۲۰ نیروگاهی در گایزرز واقع در ایالت کالیفرنیای آمریکا ساخته شد. امروزه انرژی زمین گرمایی سومین نوع از انرژی های نو می باشد که در دنیا جهت تولید برق مورد استفاده قرار می گیرد.

رح کود ۹۲٪ از انرژی برق تولید شده در جهان از انرژی های نو مربوط به

سهم برق آبی، ٥/٥٪ زیست توده، ١/٦٪ زمین گرمایی، ١٠٦٪ باد و ۰/۰۵٪ مربوط به انرژي خورشيد است. از بين كشورهايي كه بهترين بهره برداری را از انرژی زمین گرمایی دارند، می توان ایسلند را نام برد. کشــور ایسلند حدود ۵۳٪ انرژی مورد نیاز خود را از انرژی زمین گرمایی، ۱۷٪ توسط برق آبی، ۳٪ توسط زغال سنگ و ۲۷٪ توسط سروخت فسيلي تأمين مي كند كه در واقع سوخت فسيلي تنها براي تأمين سوخت اتومبيل ها، كشتى ها و هواييماها استفاده مى شود[١٣]. در ایران نیز از دیرباز انرژی زمین گرمایی شناخته شده، و به صورت چشمه های آب گرم و آب های معدنی برای مصارف درمانی و استحمام مورد استفاده قرار می گرفته است. کشور ایران در کمربند آتشفشانی زمین قرار گرفته و به همین سبب آثار و نشانه های بارز این انرژی در آتشفشان های خاموش سبلان، سهند، دماوند، تفتان و بزمان وجود دارد. با بررسی شیمیایی سنگ های آتشفشانی و همچنین بودن چشمه های آب گرم در حوالی کوه سبلان می توان یی به وجود یک مخزن ماگمایی نسبتاً سطحی در زیر کوه سبلان برد. هم چنین برای تعیین سن آن ها می توان از سن سنجی ایزوتوپی بهره گرفت. بنابراین جمع آوری اطلاعات و ارزیابی منطقه از نظر زیست محیطی و زمین شناسی جنوب شهر مشکین شهر توسط سازمان بهره وری انرژی ایران در سال ۱۳۷۹ شروع شد و اولین نیروگاه زمین گرمایی کشور در مشکین شهر در سال ۱۳۸۵ در دامنه سبلان به بهره برداری رسید. [۱۲و ۱۰و ۱۵].

از انرژی زمین گرمایی به دو صورت استفاده می شود:

۱. استفاده مستقیم یا تولید حرارت مانند تأسیسات حرارتی، پرورش
 آبزیان و ...

٢. استفاده غير مستقيم يا توليد برق

استفاده مستقیم از انرژی زمین گرمایی ۱-استخرهای آب گرم

در این روش آبگرم خارج شده از زمین را در استخرها و مراکز جذب گردشگری مورد استفاده قرار میی دهند. به طور معمول آب گرم خودبخود از زمین خارج می شود. در حال حاضر قریب به 70 کشور جهان از چشمه های آب گرم و تاسیسات تفریحی زمین گرمایی استفاده می کنند، به طور مثال ژاپنی ها با بهره گیری از بیش از ۲۲۰۰ کانون تفریحی مرتبط با چشمه های آبگرم سالانه قریب به ۱۰۰ میلیون مهمان و گردشگر را پذیرا هستند. ایران نیز جزو کشورهای استفاده کننده از این چشمه ها است. با توجه به موقعیت زمین شناختی ایران می توان در مناطق مختلفی از این روش استفاده کرد. از مهمترین مناطق کشور می توان به:

منطقه تفتان (بزمان)، منطقه نايبند، منطقه بير جند (فردوسي)، منطقه تكاب (هشترود)، منطقه خور (نبا بانك)، منطقه اصفهان (محلات)، منطقه رامسر، منطقه بندر عباس (ميناب)، منطقه بوشهر (كازرون)، منطقه لار (بستك)، منطقه دامنه سهند (سرعين و ...) اشاره كرد.

در استفاده از ایسن روش علاوه بسر مزیت های اقتصادی و جذب گردشگر می توان به مصارف آب درمانی بسرای درمان بیماری های دستگاه گوارش، ناراحتی های عصبی، مشکلات پوستی و درد مفاصل نیز اشاره کرد.

البته در استفاده از آب های گرم باید توجه کرد که این آب ها املاح زیادی با خود دارند و حتی ممکن است همراه با آن برخی از گازها از چاه بیرون بیآیند، گاز هایی که حتی ممکن است سمی باشند. در جدول (۱) املاح موجود در برخی از این آب ها آورده شده و مقدار آن با مقدار استاندارد مقایسه شده است. افزایش غلظت این مواد معدنی از یک حد مجاز زیان آور می باشد که در این صورت این آب ها باید

تصفیه شده و بعد مورد استفاده قرار گیرند. [۱۲و۱۳].

	NHr	$\mathbf{H}_{\tau}\mathbf{S}$	Hg	AS	В	Li
ب تازه	+/+*	>dI	1/******	·/**T	-/-1	74.47
اب جامهای عصبی						- 1
درياي سائش (إيالات متحده)	TAF	\F	1.15	ST	7%	T10
مكريك	188	-/18	1/11/2	17/1	33	
pur!	-/Y-	ADV	44	*/V	۲.	17
خار آب (s) با کازهای جکابی تابدیر (neg)	100					
ئيسرز (امريكا) (s)	Vee	97.	1/1.8	1/+14	19	
السرز إمريك) (1909)	44	9T.				
-ري _{ار ا} بر(ه)	41		+/+*	-	-	-
(neg) page	19.	70+				
رابراکی(۶)	۲ .	54	./5		-/17	-
رابراکی(neg)	4/5	T++	-		+/-67	-

جدول ۱ : غلظت مواد آلاینده در برخی گازها و مایعات جاری انرژی گرمایی و مقایسه آن با مقادیر استاندارد. [۱۸].

۲-مراکز گلخانه ای

در سال های اخیر استفاده از روش گلخانه برای کشت محصولات کشساورزی مورد توجه قرار گرفته است. در استفاده از گلخانه ها محصولات کشاورزی از سرما در امان بوده و با توجه به قابل کترل بودن محیط کشاورزی آفات گیاهی نیز کمتر به محصولات آسیب می رسانند. به خصوص در مناطق کوهستانی که در هوای آزاد فصل های سرد هیچ محصولی به عمل نمی آید، با استفاده از گلخانه ها می توان کشاورزی کرده و محصول به عمل آورد. یکی از موانع استفاده از گلخانه ها سیستم گرمایش گلخانه می باشد. استفاده از سوخت های فسیلی در سیستم گرمایش گلخانه ها هزینه زیادی در بر دارد، همچنین ایجاد دمای پایدار همین دلیل بسیاری به استفاده از انرژی زمین گرمایی روی آورده اند. همین دلیل بسیاری به استفاده از انرژی زمین گرمایی روی آورده اند. استفاده از انرژی زمین گرمایش گلخانه ای علاوه بر کاهش دادن هزینه های استفاده از سوخت های فسیلی دمای پایداری را نیز در گلخانه ایجاد می کند، همچنین از آلودگی های زیست محیطی که نیز در گلخانه ایجاد می کند، همچنین از آلودگی های زیست محیطی که به خاطر استفاده این سوخت ها ایجاد می شود جلوگیری می کند.

۳- گرمایش منازل

به کمک لوله کشی و انتقال آب های گرمی که از زمین بیرون می آیند، این آب های گرم را می توان به مناطق مسکونی منتقل کرد و مانند سیستم های شوفاژ موجود در منازل از حرارت این آب های گرم جهت گرم کردن محیط استفاده نمود. برای گرمایش منازل، آب های گرم زمینی باید حرارتی در حدود ۵۰ الی ۱۰۰ درجه سانتیگراد داشته باشند. همانطور که گفته شد ۸۵ درصد انرژی گرمایی قابل استحصال نیز دمای کمتر از

تر می کند، و وقتی بدانیم ۷۰ درصد از گاز طبیعی مصرفی کشور (که به طور متوسط ۵۰۰ میلیون متر مکعب در روز می باشد) به گرمایش ساختمان اختصاص می یابد اهمیت این امر بیشتر می شود [۹ او ۱۸].

۴- ذوب برف و پیشگیری از یخبندان

سیستم ذوب برف زمین گرمایی متشکل از لوله هایی است که به صورت شبکه ای درمعابر و نقاط حادثه خیز جاده ها و پل ها جاسازی شده اند. دراین شبکه سیالی را که با انرژی زمین گرمایی گرم می شود، به داخل لوله ها می فرستند تا برف ها را ذوب کند.

شکل ٤: نمایی از روش ذوب برف و پیشگیری از یخبندان معابر توسط انرژی زمین گرمایی[۲۰].

زدودن یا ذوب کردن برف و یخ انباشته بر باند فرودگاه ها، بزرگراه ها و پل ها در زمستان یکی ازموضوعات اساسی در طرح افزایش ایمنی راه ها و نقل و انتقالات است. ساده ترین راه برای این کار استفاده ازمواد شیمیایی (نمک) و دستگاه های برف روب مکانیکی است. نمک (کلرید سدیم) با آب و یخ ترکیب شده و دمای ذوب آن را کاهش می دهد. البته درمواردی که دمای سطح از منفی ۹ درجه سانتیگراد کمتر باشد استفاده از نمک بی فایده خواهد بود. عیب استفاده از نمک، واکنش خوردگی نمک با فولادهای تقویت کننده ی پل و حتی سازه های فولادی پل (در دراز مدت) است از طرف دیگر استفاده از مواد شیمیایی نظیر نمک، به محیط ریست و پوشش گیاهی و جریان های آب آسیب می رساند.

روش دیگر مبارزه با برف، یعنی استفاده ازماشین آلات برف روب، ممکن است به سطوح آسیب رسانده و هزینه های گزافی را برای تعمیر آنها تحمیل کند. در حال حاضراستفاده از برف روب ها تنها راه مبارزه با برف درشرایط بحرانی است. با توجه به این نکات در نظر گرفتن سیستم ذوب برفی که هزینه های کمتری داشته و خسارت وارده برجاده ها و پل ها را کم کند، ضروری به نظر می رسد. [۲۲و ۲۱].

۵- پمپ حرارتی

بطور کلی مخازن زمین گرمایی که دمای آنها کمتر از ۱۵۰ درجه سانتیگراد است، برای تبدیل به انرژی الکتریکی دارای توجیه اقتصادی نیست. لذا این گونه مخازن زمین گرمایی جهت بهره گیری مستقیم از انرژی حرارتی و تأمین سرمایش و گرمایش ساختمان ها در فصول مختلف استفاده می شود. عملکرد پمپهای حرارتی همانند کولرهای گازی

است؛ با این تفاوت که مصرف برق آنها بسته به نوع سیستم از ۳۰ تا ۷۰ درصد کمتر از کولرهای گازی و سایر سیستم های سرمایشی و گرمایشی رایج است.

سیستم سرمایش پمپ حرارتی به این صورت است که هوای گرم اتاق از طریق فن مکنده وارد دستگاه شده و پس از عبور از کویل سرد به داخل اتاق دمیده می شود. دراین فرآیند گرما به سیال سرد منتقل شده و توسط یک مبدل دو لوله ای به آب داخل کویل زمینی (لوله های پلی اتیلنی نصب شده در داخل زمین) منتقل می شود.

به گزارش سازمان انرژی های نوی ایران در کشور ۵ پمپ حرارتی زمین گرمایی در مناطق مشکین شهر، طالقان، رشت، اهواز و بندر عباس جهت تأمین سرمایش و گرمایش محیط نصب شده است. نتایج حاصل نشان دهنده این است که این سیستم ها در فاز گرمایش بین ۹۰۰ تا ۱۲۰۰ وات برق مصرف نموده اند که در بخش سرمایش در مقایسه با یک کولر گازی حدود ۵۰ تا ۷۰ درصد کاهش مصرف برق داشته است. [۲۶۳۳].

استفاده غیر مستقیم از انرژی زمین گرمایی

در استفاده غیر مستقیم، انرژی زمین گرمایی در نیروگاه های زمین گرمایی تبدیل به انرژی الکتریسیته می شود و بعد انرژی تولید شده وارد شبکه سراسری برق شده و مورد استفاده قرار می گیرد[۲۹و۲۵].

به طور ساده می توان گفت که نیروگاه های زمین گرمایی به دو دسته تقسیم می شوند:

۱- نیروگاه زمین گرمایی با سیال دو فاز بخار و مایع

معمولا سیالی که به شکل دو فاز مایع و بخار می باشد، از چاه های زمین گرمایی خارج می شود. هر چه تعداد این چاه ها بیشتر باشد میزان مایع و بخار خارج شده از آن ها و متناسب با آن میزان تولید برق نیز بیشتر می شود. این سیال در مخزن جدا کننده بخار از مایع جمع آوری شده و سلیس فاز بخار از مایع جدا می شود. بخار جدا شده وارد توربین شده و باعث چرخش پره های توربین می شود.

۲- نیروگاه زمین گرمایی با سیال تک فاز

در این نوع نیروگاه ها نیاز به مخزن جدا کننده نمی باشد. زیرا آب گرم وارد مبدل حرارتی شده و حرارت خود را به سیال عامل دیگری که معمولا ایزوپنتان می باشد و نقطه جوش پایین تری نسبت به آب دارد منتقل می کند، در این فرآیند ایزوپنتان به بخار تبدیل شده و به توربین منتقل می شود.

تقديرو تشكر

از استاد دکتر یوسف ثبوتی که با ارائه رهنمودهای با ارزش درنگارش این مقاله راهنمایم بودند، صمیمانه تشکر میکنم.

منابع و مآخذ

othermal Industry»: Three Decades of Growth, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects.Vol 14. pp. 443–455.

[16] Iceland. N and Noorollahi, Y. Barnett, P.(2005). «Application of GIS and Remote Sensing in Exploration and Environmental Management of NÁMAF-JALL Geothermal Area». United Nations University, MSc thesis.

[17] Barbier, E. (1997). "Natyre and Technology of Gothermal Energy: a Review" Int. Journal of Renewable & Sustainable Energy Reviews, Vol. Nos ½, March /June.

[۱۸] شـركت ملى نفت ايران، شركت بهينه سـازى مصرف سوخت. http://www.ifco.ir/

را و زارت نیرو، سازمان انرژی های نو ایران (سانا) [۱۹] و زارت نیرو، سازمان انرژی های نو ایران (سانا) [20] S. J. Rees and J. D. Spliter and X. Xiao(2002).»Transient Analysis of Snow-Melting System Performance». ASHRAE Transactions.

[21] J. W. Tester(2006). The Future of Geothermal Energy, Impact of Enhanced Geothermal Systems (Egs) on the United States in the 21st Century: An Assessment. pp. 1–33. ISBN 0-615-13438-6.

[۲۲] برخیال. س، عسگری، ۱. ، شیر زادی، م. (۱۳۸۹). «آنالیز عددی سیستم ذوب برف زمین گرمایی یک پل نمونه»، فصل نامه علمی یژ وهشی شریف، شماره چهلم، ص ۱۹۳–۱۸۷.

[23] Erkan , K. Holdmann, G. Benoit. W ,Blackwell ,D.(2008). «Understanding the Chena Hot flopë Springs, Alaska, Geothermal System Using Temperature and Pressure Data», Geothermics. Vol 37 (6). pp. 565–585. [24].Hanova, J. Dowlatabadi, H.(2007). «Strategic GHG Reduction through the Use of Ground Source Heat Pump Technology, Environmental Research Letters 2: 044001, Bibcode2007ERL.....2d4001H, doi:10.1088/1748-9326/2/4/044001.

[25]R. Bertani and I. Thain(2002). Geothermal Power Generating Plant CO2 Emission Survey. IGA News (International Geothermal Association).

[26] M. Wakil(1985). Power plant technology. 2nd Edition., McGraw

[۱] ثبوتی، ی (۱۳۹۰). «اقلیم و تغییرات آن در سده های بیستم و بیست و یکم»، مجله نشا علم؛ شماره دوم، ص ۱۵-۵.

[۲] ثبوتی، ی (۱۳۹۰). فرمین گرم ، انتشارات گیتاشناسی تهران.

[3]B. Fridleifsson, Ingvar and R. Bertani and E. Huenges and L. Rybach(2008).» The possible role and contribution of geothermal energy to the mitigation of climate change», Luebeck, Germany, pp. 59–80.

[4]E. William Glassley(2010). «Geothermal Energy: Renewable Energy and the Environment», CRC Press.

[٥] شیخ احمدی، الف، زرگرزاده، م و ابراهیمی(۱۳۸۳).» فرصتی برای بهره گیری از انرژی های نو»، واحد تهران جنوب دانشکده فنی مهندسی گرو برق قدرت، فصل ۸و۲.

[7] یوسفی، ح.، نوراللهی، ی و سهراب تیکا (۱۳۸۲). «ارزیابی اثرات زیست محیطی نیروگاه زمین گرمایی مشکین شهر(EIA)»، چهارمین کنفرانس ملی انرژی. اسفند ۱۳۸۲ تهران – ایران ص ۲۱۰ – ۲۱۹. [۷] م.ک.مجید؛ «انرژی زمین گرمایی، وقتی اجاق زمین گرم است»؛ (www.IrPDF.com)

[۸] بر اساس اطلاعات اداره تحقیقات زمین در استان Niedersachsisches آلمان در سال ۱۹۹۷.

[9] K. S. Sanyal and W. J. Morrowand J. S. Butler (2010). «Cost of Electricity from Enhanced Geothermal Systems». Thirty-Second Workshop on Geothermal Reservoir Engineering, Stanford, California.

[10] D.L Turcotte and G. Schubert, (2002).» Geodynamics», Cambridge, England, UK: Cambridge University Press, ISBN 978-0-521-66624-4.

[11] Fotouh. M,(2000).» Geothermal Energy in Iran», Geothermal, Volume 29.

[۱۲] از انرژی های نو چه می دانید، گزارش دوم، ســـازمان انرژی های نو در ایران

[13] A. Ragnarsson(2010). «Geothermal Development in Iceland 2000-2004», Proceedings World Geothermal Congress, Antalya, Turkey. pp. 01-17.

[14] R. Cataldi(1993). «Review of Historiographic Aspects of Geothermal Energy in the Mediterranean and Mesoamerican areas Prior to the Modern Age, Geo-Heat Centre Quarterly Bulletin.pp. 13–16.

[15] L. McLarty and J.M. Reed(1992). «The U.S. Ge-

اقتصادسبز

سجاد سروری۱

چكىدە

کره زمین از نخستین پیدایش انسان تا کنون، پایه ای ترین منبع تامین نیازمندی های بشر بوده است. بکارگیری نادرست منابع خام، پس از انقلاب صنعتی، زیان های جبران ناپذیری برای سلامت زمین به بار آورده است. در دو دهه گذشته، دیدن آثار زیان باری چون بالا رفتن دمای اتمسفر، تخریب زیست کره و آلودگی پسماند های صنعتی از یک سو و کاسته شدن منابع از سویی دیگر، پژوهشگران و سیاست گذاران کشورهای توسعه یافته را به ایجاد دگرگونی در شیوه برنامه ریزی توسعه پایدار و مدیریت صحیح در کره زمین تشویق کرده است. دستاورد این بازنگری و دگرگونی در منش اقتصادی، شکل گیری جنبشی، با عنوان اقتصاد سبز است. سبز بودن اقتصاد، به معنای تولید فرآوده های سازگار با طبیعت و محیط زیست و بازسازی تجارت و زیرساخت های اجتماعی است، به گونه ای که علاوه بر سود آوری بیشتر، میزان تولید گازهای گلخانه ای و استخراج منابع کاهش یابد. هم اکنون، لازم است توسعه پایدار بر پایه اقتصاد سبز، به عنوان یکی از مهم ترین راهبرد های سازمان ملل برای بهبود کیفیت زندگی آیندگان مورد توجه کشورها قرار گیرد.

واژگان کلیدی: توسعه پایدار، اقتصاد سبز ، سازمان ملل، فرآورده های سبز، انرژی سبز.

ييشگفتار

سبز بودن اقتصاد، فرآیند ایجاد دگرگونی در تجارت و زیرساخت ها است به گونه ای که بر پایه حفظ طبیعت و محیط زیست پایدار، سرمایه گذاری و توسعه اقتصادی بهتر رونق بهتری یابد.این نگرش می باید موجب کاهش تولید گازهای گلخانه ای،کاهش استخراج منابع کره زمین و کاهش پسمان ها شود. اگر بخواهیم با توصیف جامع تری به تشریح اقتصاد سبز بپردازیم، می توانیم با ۳ چشم انداز آن را تعریف کنیم[۱]:

۱)چشم انداز فنی: این چشم انداز، (اقتصاد سبز^۲) را از روش معیارهای کمی و تحلیلی که میزان سبز بودن یک فرآورده یا خدمات یا فرآیند را معین می سازد، بررسی می کند.

۲)چشم انداز اقتصادی:به بررسی موضوع هایی می پردازد که در دسته بندی تلاش های اقتصادی نقش دارند. برای نمونه؛ راه اندازی نیروگاه بادی مولد برق، یک تلاش سبز دیر بازده است، در حالی که احداث کارخانه بازیافت کاغذ، یک تلاش زودبازده می باشد.

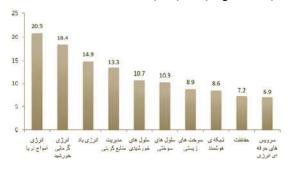
۳)چشم انداز توسعه گرا: فرصت حضور (کارگماری سبز^۳) را در (فرآیند توسعه) ارزیابی می نماید. فرآیند توسعه به سلسله کنش هایی گفته می شود که در پایان منجر به تولید فرآورده می شود، که با قراردادن (کارگماری سبز)در این فرآیند می توان به (فرآورده سبز) رسید. مراحل (فرآیند توسعه)، به ترتیب عبارتند از پژوهش، طراحی، تحویل، پیاده سازی، بکارگیری و نگهداری.

تلفن: ۹۸۹۳ و ۱۹۸۳ و دورنگار: ۲۹۸۲۱ (۹۸۲۱) تا دورنگار: ۴۹۸۹۲ (۹۸۲۱) پُست الگترونیکی:sajad.sarvari@ut.ac.ir

- 2. Green Economy
- 3. Green Job
- 4. Green Product

۱. گروه بیوتکنولوژی پردیس دانشکده های علوم، دانشگاه تهران، ایران.

مهارت سبزا و کارگماری سبز


کارگماری سبز به تلاشی گفته می شود که سازگار با محیط زیست باشد. هم اکنون، کارگماری سبز از مهمترین جنبش های سیاسی-اقتصادی در جهان به شمار می رود.

کار و پیشه های سبز را می توان در ۳ گروه پایه ای طبقه بندی کرد: ۱) صنعت سازه های سبز

۲) صنعت بازیافت و تصفیه

۳) صنعت تولید انرژی های پاک و تجدیدپذیر

صنعت سازه های سبز، مسئول تامین نوعی مصالح ساختمانی است که مانع تبادل انرژی میان ساختمان و محیط می شود. فناوری سازه های سبز هم اکنون دوران ساده ترین پیشرفت خود را در جامعه می گذراند. در دیدگاهی ریزبین تر، می توان میزان رشد سالیانه کار و پیشه های سبز را در شکل زیر بازنگری کرد.

شکل ۱- مقایسه رشد کار و پیشه های سبز بر پایه درصد فراوانی nttp://www.brookings.eau

مهارت های سبز دانش، آموزش و آزمایش در راه فناوری هایی است که کمترین اثر زیان بار را بر محیط زیست دارند. راه پیشروی پیشنهادی نظریه پردازان برای برقراری توسعه پایدار، آغاز حرکت از مهارت سبز به سوی کارگماری سبز و پس از آن فرآورده سبز می باشد، ولی این راه، به تنهایی به انجام توانا نمی باشد، زیرا در برخی موارد شکاف هایی میان مهارت های سبز بوجود می آید.برای مثال؛ از دیدگاه سازه سازی سبز، بکارگیری دیوارهای نارسانا از جنس سلولز در خانه ها، باید به جامعه آموزش داده شود، در حالی که تهیه سلولز به روش های معمول، مخالف با نگهداری جنگل ها و هسته های سبز می باشد.

برای رفع این مشکل، به طور معمول با مقایسه بازده دو دیدگاه نظری، می توان به دستاورد فراگیری رسید.

فرآورده سبز و انرژی سبز را می توان پایانی ترین دلخواه و پسند اقتصاد سبز دانست، از این روی بیشترین اندازه بازده زیست

محیطی را باید با اندازه سازش پذیری زیستی فرآورده سبز و یا انرژی سبز سنجش نمود، برای نمونه ؛ سازش پذیری فرآورده های نفتی چون پلاستیک به دلیل دیر تجزیه شدن در محیط بسیار ناچیز می باشد، هم چنین انرژی های سوخت های فسیلی نیز سازش پذیر نیستند، چرا که باعث آلودگی محیط می شوند. پژوهش ها نشان می دهند که برنامه افزایش مهارت های کاردانی برای حمایت از تلاش های اقتصادی سبز مورد نیاز خواهد بود. برخی ازاین مهارته اعبارتند:

۳) مفیدتر بودن انرژی های پاک برای صنایع کوچک ٤) سلامت بهداشتی و ایمنی محیط زیست

انرژی خورشیدی و باد،صنعت باتری و انرژی الکتریکی،مدیریت توسعه پایدار و صرفه جویی در مصرف انرژی ،امور مالی محیطی، مهار کردن گازهای گلخانه ای و توانایی بکارگیری سوخت های نسته ،

مهمترین پرسش هایی هستند که ذهن سیاست گذاران را به خود درگیر می کند،این است که چرا زیرساخت های اجتماعی – اقتصادی جامعه را باید بر اساس اقتصاد سبز، بازنگری نمود؟

برای نمونه ؛دولت آمریکا، در یک پیش بینی و سنجش اقتصادی، مزایای گسترش بیشترین اقتصاد سبز را در کشورش به شرح زیر به آگاهی می رساند:

۱) برپایے نزدیک به ۷,۲ میلیون فرصت کار و پیشــه تازه در برای فرآوری انرژی پاک

۲) افزایش سود صنعتی نزدیک به ۳٫۵ برابر سود کنونی

جایگاه جهانی (اقتصاد سبز) [۲]

اهمیت نگهبانی از محیط زیست، کشورهای عضو سازمان ملل را به تشکیل زیرسازمانی با عنوان (برنامه ریزی محیط زیست سازمان ملل) واداشته است که این زیر سازمان ،هدف خود را راهنمایی و تشویق مشارکت در نگهبانی از محیط زیست و بهبود کیفیت زندگی به وسیله الهام بخشی و آگاهی رسانی می داند.

در کنار این زیرسازمان بین المللی، سازمان هایی چون سازمان اکو در کنار این زیرسازمان بین المللی، ساختمان سازی سبز در ایالات متحده و گروه انرژی و دگرگونی آب و هوا در انگلستان قرار دارند که اقتصاد سبز را در نخستین های اهداف خود بر شمرده اند.

ابتکار (اقتصاد سبز) ٔ در زیرمجموعه ساختار برنامه ریزی محیط زیست سازمان ملل،اهداف خود را برای پیشرفت به سوی اقتصاد سبز در قالب شکل صفحه بعد برمی شمارد.

برنامه ریزی محیط زیست سازمان ملل، راهبردی را پیشنهاد می دهد که از همه سنجه های فرصت دگرگونی بهره می جوید.برخی از مفاد

^{1.} Green Skill

^{2.} Biocompatibility

^{3.} United Nation Environmental Program

^{4 .}Green Economy

شكل ٢-اهداف ابتكار سبز

آن، به شرح زیر می باشد:

۱) لحاظ نمودن برنامه های سرمایه گذاری سبز در بودجه دولت به طور منظم

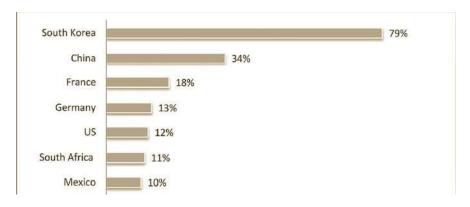
۲) بررسی راه های متفاوت سرمایه گذاری سبز عمومی و خصوصی
 ۳) توان بخشی به شرایط داخلی و خارجی (سیاست، استانداردها، آموزش و پرورش و آموزش، انتقال فنآوری، موافقت نامه های زیست محطی)

کاآگاهی بخشی جامعه به کمک برگزاری دوره های آموزشی
 ب خدمت گرفتن مزارع و منابع محلی برای بهره برداری انرژی

آ) بکارگیری عوامل تشویق کننده توسط دولت، برای نمونه ؛ در
 برخی کشورهای توسعه یافته،مالیات منازل با بالا رفتن سطح سبز
 بودن ساختمان ،کاهش می بابد، یعنی ساختمان هایی که در ذخیره

سازی انرژی گرمایی یا سرمایی ،کارآمدتر باشند، مجبور به پرداخت مالیات کمتری می باشند.

هم اکنون، بر پایه آخرین گزارش ها، کشــورهای کره جنوبی، چین و فرانسه بالاترین رتبه کشورهای سبز می باشند[۳].


شهر سبز

شهر سبز به شهری گفته می شود که منبع تامین انرژی ساکنان و صنایع در آن زیست سازگار باشد و بافت شهری آن، بیشترین بهره را برای بوجود آوردن محیط سبز بجوید. برای نمونه ؟ شهر بنادری راک در ایالت میسوری آمریکا با جمعیت ۳۱۰۰ نفر، نخستین شهر سبز آمریکاست، چرا که نه تنها تمام انرژی خود را از راه انرژی بادی فراهم می کند ، بلکه صادر کننده برق به شهرهای همسایه نیز می باشد.

باید در نظر داشت که یکی از مهم ترین پایه های توسعه پایدار جهانی، بکارگیری اقتصاد سبز است، از این رو در سال ۲۰۱۲ ، کنفرانس سازمان ملل برای توسعه پایدار در شهر ریودیژانریو-برزیل برگزار می شود.

نتيجهگيري

شواهد و مدارکی که در این نوشتار ارائه شد، نشانگر گستردگی ژرفای (اقتصاد سبز) - چه به شکل نظریه و چه به صورت جنبش اقتصادی و اجتماعی - نه تنها در برنامه ریزی کلان جهانی در کشورها، بلکه در کاربردی شدن در آینده ای نزدیک می باشد. کشور ایران از دیدگاه اقلیمی ، دارای ۳بافت غالب است که با تامل در مهارت های سبز می توان از بیشترین ظرفیت سبز شدن آنها را در زندگی روزمره، بکار گرفت. برای نمونه ؛ راه اندازی نیروگاه های سلول خورشیدی در بافت کویری می توانند نقش مهمی را در فرآوری منابع انرژی سبز و بکارگیری انرژی امواج در بافت مدیترانه ای، قسمت های دیگری و بکارگیری انرژی امواج در بافت مدیترانه ای، قسمت های دیگری داشست که پی ریزی زیربنای اقتصاد سبز می باشد. هم اکنون باید در نظر داشست که پی ریزی زیربنای اقتصاد امروز، زمینه ساز اقتصاد پویا و مستقل فرداست.

شکل ۳- سنجش درصد پیشرفت های محرک های سبز

منابع و مآخذ

[1]. Siegel, D.S., (2009).» Green Management Matters Only If It Yields More Green»: An Economic/Strategic Perspective, The Academy of Management Perspectives Archive, Academy of Management. Vol. 26, p.p (5-12).

[2] . Petsonk, C. A. (1989). «Role of the United Nations Environment Program UNEP) in the Development of International Environmental Law Recent Developments in International Organizations, American University Journal of International Law and Policy Vol. 39, Pages.351.

[3].M.Hardy (1973)» United Nations Environment Program», Natural Resources Journal Vol. 13, P.235.

یایگاه های بکار گرفته شده برای داده ها

http://www.brookings.edu/

http://www.greenskills.com.au/

http://www.americanprogress.org/issues/2011/09/top ten green jobs

http://www.unep.org/

http://www.eclac.cl/portofspain/noticias/paginas/1/44351/Transition_to_Green_Economy_Benefits_Challenges_Risks__SD_Perspective_2011.pdf#page=41

www.iccwbo.org/.../Environment/Green%20Economy-ICC.desta.ppt

http://www.bis.gov.uk/policies/further-education-skills/skills-for-green-economy

فاطمه نوروزنژاد ، مسعود شبانی دومولا * ا

چکیده

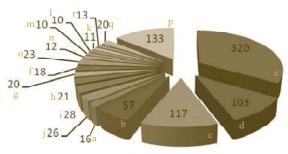
آلفرد نوبل در سال ۱۸۹۲ جایزه نوبل را با این نیت و آرزو پایه گذاری کرد تا دانشمندان و فرهیختگانی را مورد تفقد و تشویق قرار دهد که در بهتر کردن شرایط زندگی انسان ها سهم بسزا داشته اند. این جایزه که عملا اعطاء آن توسط بنیاد نوبل از سال ۱۹۰۱ شروع شده، هر ساله در ٥ رشته فیزیک، شیمی، پزشکی، ادبیات و صلح به برجستگان هر پنج شاخه یاد شده اعطاء می شود و تاکنون توانسته است موجب ارتقاء دانش بشری شود. در این مقاله به مناسبت سال جهانی شیمی (۲۰۱۱)، اسامی و موضوع تحقیق برندگان جایزه نوبل شیمی از ابتدا تا کنون مرور می شود.

برگزیدگان نوبل شیمی پنج کشور اول به ترتیب از کشور های آمریکا ، آلمان، بریتانیا، فرانسه و ژاپن می باشند. نکته قابل اشاره در سال های آفریکا و بریتانیا گزارش نشده است ، پس از بیست سال، نخست، نام بریتانیا و پس از ۲۳ سال نام آمریکا در جدول برگزیدگان نوبل آمده است. قرار گرفتن کشور ژاپن در میان پنج کشور اول برگزیدگان نوبل، نشان می دهد که شیمی از اهمیت خاصی برای دانشمندان این کشور بر خوردار است، علیرغم اینکه در کل جوایز نوبل در رده های پائین قرار دارد. سهم زنان دانشمند از نوبل شیمی کا نفر (۲/۵ درصد) و سهم روسیه در نوبل شیمی ۱/۲ درصد می باشد.نکته حائز اهمیت دیگر در اعطاء جوایز نوبل ، تعلق گرفتن جایزه نوبل به آن دسته از شیمیدانانی است که در قلمرو علوم زیستی و پزشکی فعالیت می نمایند. بطور تقریب می توان گفت که این دسته از دانشمندان در ربع قرن اخیر توانسته اند ٤٠ ٪ از مجموع کل جوایز شیمی که در قلمرو علوم زیستی می باشد را بخود اختصاص دهند و در زمینه پزشکی هم شیمیدان ها جوایز متعدد نوبل پزشکی را دریافت نموده اند.

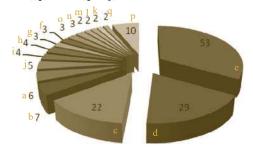
واژگان کلیدی: جایزه نوبل، برگزیدگان نوبل شیمی، تقدیر از دانشمندان، بنیاد نوبل.

*عهده دار مکاتبات، تلفن/ دورنگار: ۹۸۲۱/۹۲۲(۹۸۲۱)، پست الکترونیکی massodshabani@yahoo.com ۱.پارک علم و فناوری دانشگاه تهران، شرکت گزلین طب، تهران، ایران.

ييشگفتار


سال ٢٠١١توسط سازمان جهاني يونسكو تحت عنوان» سال جهاني شیمی» نامگذاری شده است، از این رو به پیشنهاد سردبیر مجله وزین نشاء علم ، به منظور پاسداشت این عنوان بر آن شدیم تا یادی از انسانهایی به نمائیم که در به ثمر نشستن درخت تنومند علم شیمی سهم به سزایی داشته اند. شکی نیست که دانشمندان برای گرفتن جایزه تلاش نمی کنند. آن ها بیشتر توجه خود را معطوف کاری می کنند که شایسته ارتقاء دانش بشري است. نيروي جلو برنده آنها ارضاي كنجكاوي ذهنی و مبارزه برای گشودن رازی از رازهای جهان هستی است. اما همانگونه که در شعر مارگوت بیگل نیز نهفته است. زندگی به امواج دریا می ماند/چیزی به ساحل می برد و چیزی دیگر را می شوید/به سركشي ، انبوه ماسه ها را با خود مي برد/اما تواند بود كه تخته پاره ئي نیز با خود به ساحل آرد تا کسی بام کلبه اش را بدان بپوشاند/ گاهی آنچه از ایسن تلاشها برجای میماند در نگاه دیگر انسانهایی که در جایگاه نظاره گری هستند، شایسته نشاندن در قله دستآوردهای بشری هر عصر است. در حقیقت، آن دستآوردها خشتهای علوم بشری هستند و هر پژوهشگری که گام در راه علم می گذارد، برای ساختن خانه آباد فردا است. این نوشتار ادای دینی کوچک است برای آنانی که با تلاش پیوسته خویش راهی برای ترویج دانش شیمی گشوده اند. آلفرد نوبل، بنیانگذار و پشتیبان مالی جایزهی نوبل، مخترع دینامیتی است که تا کنون صدها هزار نفر را به کام مرگ کشانده است. راهی که او برای جبران بکارگیری نامناسب از اختراع خویش در پیش گرفت، بخشــیدن ثروتی بود که از راه فروش دینامیت کسب کرد. او این ثروت را در اختیار بنیادی گذاشت که پس از مرگ او در سال ١٩٠١تشكيل شد و بنياد نوبل نام گرفت تا هرساله از سود بدست آمده از سرمایه گذاری ثروت نوبل جوایزی برای دانشمندان و پیشگامان علم در شیمی، فیزیک، پزشکی، ادبیات و صلح که خدمتی ارزنده ارائه داده اند، اهدا شود.

جایزه شامل یک مدال، یک گواهینامه و یک جایزهی نقدی است. مدال در هر دو سمت مزین به نیمرخ آلفرد نوبل است. ارزش پولی جایزه نوبل در طول سالها بین ۳۰,۰۰۰ تا ۱,۰۰۰,۰۰۰ دلار در نوسان بوده است، روند تقسیم جایزه مشترک بین دو یا سه نفر، از سال ۱۹۲۹ آغاز شد و باعث كاهش سهم پولى دريافت كنندگان مشترك جايزه نوبل شد. هیئتی که برندگان این جایزه را بر می گزیند، شامل پنج کمیته اختصاصي متشكل از سـه تا پنج عضو است. در مورد نوبل شيمي و فیزیک، این داوری بر عهدهی آکادمی سلطنتی علوم سوئد در استکهلم است[۱]. جایزهای با چنین ارزش مادی و اعتباری چشمگیر که مورد توجه تمامی محافل است و هر دانشمندی و هر ملتی آرزوی دریافت آنرا دارد، اگر چه فرایند اعطای این جایزه نمی توانسته بدوراز اشتباه های داروی باشد؛ اما بندرت، پیش آمده که برندهای به راستی شایستگی دریافت جایزه را نداشته است. برای نمونه؛ می توان به «یوهانس فیبیگر» پاتولوژیست دانمارکی اشاره کرد که در سال ۱۹۲۲ برنده جایزهی پزشکی شد. این در حالی است که پژوهشهای او برای تکثیر غدههای بدخیم به طور جدی دارای اشکال هایی بود[۲]. همچنین است نادیده گرفتن کارهای «پالسکو» و «زولزر « دانشمندان به ترتیب رومانیایی و


آلمانی در اهدای نوبل پزشکی سال ۱۹۲۶. در این سال، جایزه نوبل به طورمشترک به «بانتینگ «و «مک لئاد» رسید که کارشان به نوعی تکرار کارهای دانشمندان رومانیایی و آلمانی یاد شده بود و تا مدتها سر و صدای زیادی هم در پی داشت و دسترسی به اسناد آن محرمانه تلقی می شد[۳] اما به هر حال، نحوه نگرش بی طرفانه اعضای کمیته گزینش برندگان، در رشتههای گوناگون و پیمان آنها نسبت به نیت آلفردنوبل مبنی بر» اهدای جوایز بی توجه به ملیت افراد و بر اساس لیاقت آنها، چه اسکاندیناوی و چه غیر آن «تاکنون بیشتراز سوی همگان پذیرفته شده و با اعتراضهای خیلی جدی مواجه نشده است[٤].

از زمانی که جایزه نوبل از سال ۱۹۰۱ برای نخستین بار اهدا شد، این جایزه وقف برجستگان و پیشگامان علوم و ادبیات و صلح شده و تا کنون مایه شهرت و اعتبار انسانهایی برجسته و متفکران و پژوهشگرانی شاخص شده است. این چنین به نظر می رسد که آلفرد نوبل به دلیل سابقه کاری در علم شیمی توجه ویژه ای به این بخش از رقابت جهانی داشته است. شکل های ۱ و ۲ به ترتیب شمار کل جوایز نوبل درپنج رشته و شمار کل جوایز نوبل شیمی را به تفکیک نام کشورهای گوناگون در جدول ۱ آورده شده است.

ر الهان اله الهان اله الهان الهان

شکل ۱:سهم کشورهای گوناگون از کل جوایز نوبل

شکل ۲: سهم کشور های گوناگون ازجوایز نوبل شیمی

كشور	رصد سهم دريافت جايزه نوبل
ايلات متحده آمريكا	%33/3
آلمان	%18/2
بريتانيا	%13/8
فرانسه	7.4/4
ژاپ <u>ن</u>	%3/7
سوئيس	%3/1
سوئد	7.2/5
اتریش	7.2/5
كانادا	7.1/8
هلند	×1/8
قدس اشغالي	%1/8
مجارستان	%1/8
روسیه	7:1/2
لهستان	%1/2
اسكاتلند	×1/2
نيوزياند	%1/2
سایر کشورها	%6/2

جدول ۱: در صد سهم کشورهای گوناگون در دریافت جوایز نوبل شیمی تا سال ۲۰۱۱

ظهور زیست شناسی مولکولی، نمونهای بارز از همکاری علوم در پیریزی پیشرفتهای علمی و فناوری مورد نیاز بشری است. زیست شناسی نوین که بعد از جنگ جهانی دوم و بر پایهی وفور فرآوردههای ایزوتوپی بشری شکل گرفت[٥].

گسترده شدن فراسوی ناشناخته های زیستی، نیازمند ابزارهایی ریزبین دیگر رشتههای علوم از جمله شیمی بود. از طرفی شیمیدانها با درک درست این واقعیت، بخشی از توانمندیهای خود را به سوی علم نوین زیست شناسی سوق دادند. دستآورد این رویکرد مشفقانه که تاریخ آن کم و بیش به انتشار کتاب «زندگی چیست» اروین شرودینگر در سال ۱۹۳۲ بر می گردد،[۷و۲] پیدایش شیمیدانهایی بود که تاثیرهای شگرف و انقلابی در توسعه روشهای آنالیز کمی و کیفی علم زیست شناسی گذاشتند. ابداع روش RCP در سال ۱۹۲۹ توسط بی. مولیس، انقلابی در تهیه اسیدهای نوکلئیک به شمار می رود[۸].

نگاهی گذار به فهرست دریافت کنندگان جایزه نوبل شیمی در ربع قرن اخیر نیز نشان می دهد که درصد بیشتری از برندگان نوبل شیمی، دانشسمندانی بودند که زمینه کاری خود را به قلمرو علوم زیستی کشاندهاند. کار بر روی ساختار ریبوزوم در سال ۲۰۰۹ از جمله ارزشمندترین پژوهش های بین رشتهای به شمار می آید. بررسی زمینه کاری برگزیدگان نوبل، درخشان ترین دست آوردهای علمی آنان و کاری برگزیدگان نوبل، درخشان ترین دست آوردهای ماموزنده و الهام بخش خواهد بود. جدول ۲ نشانگر نام، ملیت، تاریخ و موضوع پژوهش برگزیدگان نوبل شیمی می باشد.

تقدير و تشكر

نویسندگان این نوشتار از آقای دکتر عباس امینی منش که در مطابقت دادن واژگان شیمی با معادل رایج آن قبول زحمت نمودند و با نقطه نظراتشان در تکمیل نهایی این نوشتار، کمال سیاسگذاری را دارند.

جدول ۲ : نام، ملیت و تاریخ کشف و موضوع پژوهش برگزیدگان نوبل شیمی

علت برنده شدن	کشو ر	نام برنده جابره	تا ریخ
کشف قوانین دینامیک در شیمی و نیز فشار اسموتیک محلولها	هلند	جاكوب هنريش وانت هوف	1901
پژوهش روی تهیه قند و پورین ها	آلمان	هرمن فيشر	1902
ارائه فرضيه تجزيه الكتروليتي	سوئد	سوانت آگوست آرنیوس	1903
کشف عناصر گازی بی حرکت د ر هوا و تعیین موقعیت آنها در جدول تناوبی	اسكاتلند	ويليام رامسى	1904
پژوهش روی رنگهای ارگانیک و ترکیب های آروماتیک	آلمان	جان فردریش آدلف ون بایر	1905
پژوهش و جداسازی عنصر فلور و تولید نوعی ماشین بخار برقی که به احترام او furnace نامگذاری شد.	فرانسه	هنری مویسان	1906
کشف و پژوهش روی تخمیر مستقل از سلول	آلمان	ادوارد بوخنر	1907
تجزیه عناصر و شیمی مواد رادیواکتیو	نيوزيلند- انگليس	ارنست رادرفورد	1908
تجزیه مواد و پژوهش های پیرامون قوانین پایه ای که تعادل های شیمیایی را کنترل می کنند و نیز سرعت واکنش ها	آلمان	ويلهلم اوستوالد	1909
پژوهش های روی ترکیب های قلیایی به شیمی آلی و صنایع شیمی	ألمان	اتوو والاش	1910
پیشبرد علم شیمی با کشف عناصر رادیوم و پلونیوم و نیز جداسازی رادیوم و مطالعه ماهیت و ترکیب های این عنصر مهم	لهستان	ماری کوری	1911
ابداع روش هیدروژنه کردن ترکیب های آلی در حضور فلزات	فرانسه	پائول ساباشیر	1912
کشف واکنش گری که به نام او گرینیارد خوانده شد و در سال های اخیر باعث پیشبرد اهداف شهمی آلی شده است	فرانسه	ویکتور گرینیارد	1912
پژوهش های روی اتصال های اتمی در مولکول ها که افق های جدیدی را در مقابل پژوهش های پیشین گشود و زمینه ساز پژوهش های نوین به ویژه در شیمی غیرآلی شد.	سوئيس	آلفرد وارنر	1913

علت برنده شدن	کشو ر	نام برنده جابره	تاريخ
تعیین اندازه درست وزن اتمی شمار بسیاری از عناصر جدول تناوبی	آمریکا	تئودور ويليام ريچارد	1914
پژوهش در زمینه ی رنگیزه های گیاهی به ویژه کلروفیل 2	آلمان	ریچارد مارتین	1915
تولید آمونیاک از عناص سازنده اش	آلمان	فريتز هابر	1918
پژوهش در زمینه ی گرماشیمی	آلمان	والتر هرمن نرنست	1920
پژوهش در مورد شیمی مواد رادیواکتیو و نیز بررسی و پژوهشهای او در زمینه ی سرآغاز و سرشت ایزوتوپ ها	بريتانيا	فردریک سادی	1921
ب وسیله ی اسپکتروگراف جرمی خود توانست ایزوتوپ های بسیاری از عناصر رادیواکتیو را کشف کند و نیز به خاطر پیشنهاد دادن قانون عدد جرمی کلی	بريتانيا	فرانسيس ويليام آستون	1922
به واسطه ابداع روش میکرو آنالیز مواد آلی	اتریش	فریتز پرگل	1923
س خاطر اثبات سرشت ناهمگن محلول های کلویهدی و روش او برای این کار که از آن زمان ب عنوان پایه برای بررسی اینگونه محلول ها در آمده است.	اتریش	ریچارد آدولف زیگموندی	1925
پژوهش روی سامانه های کلوئیدی	سوئد	تئودور سودبر	1926
پژوهش پیرامون اسیدهای صفراوی و مواد مربوط به آنها	آلمان	هنريش اتوو وينلند	1927
شناسایی ساختار استرول ها و ارتباط آنها با ویتامینها	آلمان	آدولف اتوورین هولد وین داوس	1928
پژوهش در مورد فرآیند تخمیر قندها و آنزیم های تاثیر گذار درموضوع تخمیر	بریتانیا آلمان/ سوئد	آرتور هاردن هانس کارل آگوست سیمون وان ایلر چلپین	1929
پژوهش پیرامون گروه هم و کلروفیل 2 و به ویژه کامیابی او در تولید و تهیه هیم	آلمان	هانس فيشر	1930

علت برنده شدن	کشو ر	نام برنده جابره	تاريخ
ابداع و توسعه روش های شیمیایی که زیر فشار بالا به انجام	آلمان	کارل بوش	1931
می رسند.	آلمان	فردریش باش	1321
پژوهش و کشف های او پیرامون شیمی سطح	آمریکا	اروین لانگ موری	1932
كشف هيدروژن	آمریکا	هارولد كلايتون اورى	1934
تهيه عناصر راديواكتيو نوين	فرانسه- فرانسه	فردریک جولیت ایرنه جولیت کوری	1935
پژوهش درباره گشتاورهای دوقطبی و پخش پدتو X و الکترون ها در گازها	هلند	پیتر جوزف ویلهلمز دبی	1936
پژوهش در مورد کاروتنوئید ها ، فلاوین ها و ویتامین های A و B2	سوئيس	پائول کارر	1937
پژوهش در مورد کربوهیدرات ها و ویتامین C	بريتانيا	والتر نورمن هوارت	1937
پژوهش روی کاروتنوئید ها و ویتامین ها	آلمان– اتریش	ریچارد کوهن	1938
پژوهش روی هورمون های جنسی	آلمان- سهئيس	آدولف فردریک جان بوتنانت لئوپولد روزیکا	1939
پژوهش روی ایزوتوپ ها وکاربرد آنها به عنوان ردیاب درمطالعه واکنش های شیمیایی	مجارستان	جورج دی هسی	1943
کشف موضوع تلاشی هسته های سنگین در اتم ها	ألمان	اتوو هان	1944
پژوهش و ابداع های در زمینه ی شیمی غذایی و زراعی به ویژه به واسطه ی روش نگهداری علوفه	فنلائد	آرتوری ایلماری ویرتانن	1945
کشف پدیده ی نوبلور شدن آنزیم ها	آمريكا	جيمز باتلر سامر	
تهیه آنزیم ها و پروتئین های ویروسی به فرم خالص	آمریکا - آمریکا	جان هوارد نورتراپ وندل مردیت استانلی	1946
تولید ترکیب های گیاهان که از نظر بیولوژیکی دارای اهمیت هستند، به ویژه آلکالوئیدها	بريئانيا	رابرت رابینسون	1947

علت برنده شدن	کشو ر	نام برنده جابره	تاريخ
پژوهش بر روی الکتروفورز و آنالیز و بررسی رونشینی ، به ویژه به دلیل اکتشاف هایش در زمینه سرشت پیچیده پروتئین های سرم	سوئد	آرن وبلهلم كورين تيسليوس	1948
پژوهش ترمودینامیک شیمیایی و به ویژه بررسی رفتار مواد در دماهای بسیار پایین	آمريكا	ويليام فرانسيس جياكو	1949
برای کشف diene و توسعه تولید آن	آلمان آلمان	اتوو پائول هرمن دیلز کورت آلدر	1950
كشف اولين عنصر ترانس اورانيوم	أمريكا	ادوین ماتیسون مک میلان	1951
كشف 10 عنصر ترانس اورانيوم	سوئد	گلن تئودور سیدبرگ	1951
ابداع کروماتوگرافی جز به جز	بريتانيا - بريتانيا	ریچارد لورنس میلینگنون سینجآرچر جان پورتر مارتین	1952
کشف هایی در زمینه شیمی بزرگ مولکول ها	آلمان	هرمن اشتادینگر	1953
پژوهش روی سرشت پیوندهای شیمیایی و کاربرد آرها در روشن نمودن	آمريكا	لينوس كارل پائولينگ	1954
ساختار ترکیب های پیچیده			
پژوهش روی مشتق های گوگرد که از لحاظ بیوشیمیایی دارای اهمیت هستند ، به ویژه به خاطر تولید و تهیه هورمون پلی پپتیدی برای نخستین بار	أمريكا	وينسنت دوو ويگنود	1955
پژوهش در زمینه مکانیسم واکنش های شیمیاوی	روسیه - بریتانیا	ریکلای نیکلاویج سمن اف سیرل نورمن هینشل وود	1956
پژوهش روی نوکئوتیدها و کوآنزیم های نوکلئوتیدی	اسكاتلند	الكساندر . آر . تاد	1957
پژوهش روی ساختار پروتئین ها به ویژه اسواین	بريتانيا	فردریک سانگر	1958
کشف و توسعه آنالیز به روش پلاروگرافیک	چک	يوروسلاو هيرووسكى	1959
ابداع روش بکارگیری کربن 14 برای تعیین سن و نیمه عمر و دیرینگی در باستان شناسی ، زمین شناسی ، ژئوفیزیک و سایر رشتهها	آمريكا	ویلارد فرانک لیبی	1960

علت برنده شدن	کشو ر	نام برنده جابره	تــا ريــخ
پژوهش پیرامون جذب دی اکسید کربن در گیاهان	آمریکا	ملوین کالوین	1961
کشف هایی در زمینه شیمی و تکنولوژی پلیمرهای بزرگ	ايتاليا	جوليو ناتا	1963
-)). 0 -) - , , , ,) / ,) /- (/)	آلمان	کارل زیگلر	1303
تعیین ساختار ترکیب های مهم از نظر بیوشیمیایی به وسیله روش پرتو	بريتانيا	دوروتی کراوفود هودگین	1964
کامیابی های بسیار چشمگیر در تهیه ترکیب های آلی	آمريكا	رابرت برن وودهاردز	1965
پژوهش روی پیوندهای شیمیایی و ساختارهای الکترونی مولکولها به			
وسیله روش	آمريكا	رابرت .اس.مولیکن	1966
اوربیتال های مولکولی			
پژوهش روی واکنش های بسیار تند که به واسطه برهم زدن تعادل با	آلمان	مانفرد ایگن	1967
اعمال پالس های	بريتانيا	رونالد جورج ويفورد نوريش	
کوتاه انرژی	بريتانى	جورج پورتر	
کشف روابط دوطرفه که به نام خودش نامگذاری شد که این روابط			
برای درک ترمودینامیک	بريتانيا	لارس اونساگر	1968
فرآیندهای غیرقابل بازگشت بسیار بنیادی هستند			
مشارکت در ایجاد مفهوم کانفورماسیون و کاربرد آن در شیمی	بريتانيا	دریک.اچ.آر.بارتون	1969
	نروژ	اد هاسل	
کشف نوکئوتیدهای قندی و نقش آنها در بیوسنتز کربوهیدرات ها	آرژانتین	لوئيس .اف .ليلوآر	1970
پژوهش روی ساختار و هندسه مولکول ها به ویژه رادیکال های آزاد	آلمان	گرهارد هرزبرگ	1971
پژوهش روی ریبونوکئازها به ویژه در مورد ارتباط بین توالی	آمریکا	گریستین.بی.آنفنسن	192
آمینواسید ها و ساختار فضایی فعال آنها			
پژوهش روی ساختار شیمیایی و فعالیت کاتالیتیک مرکز فعال مولکول	(g	استنفورد مور	
ريبونوكلئاز	آمريكا- آمريكا	ويليام اچ.استين	1972
		ارنست اتوو فیشر	
پژوهش روی شیمی ارگانومتال ها یا همان ترکیب ها ساندویچی	آلمان- بریتانیا	جئوفرى ويلكينسون	1973

علت برنده شدن	کشو ر	نام برنده جابره	تاريخ
به خاطر کامیابی های بنیادین پیرامون شیمی فیزیک ماکرومولکول ها ، درهر دو سطح نظری وعملی	أمريكا	پائول.جى.فلورى	1974
پژوهش روی شیمی فضایی واکنش های کاتالیز شده با آنزیم	استراليا	جان واركاب كانفورت	1975
پژوهش بر روی شیمی فضایی مولکول های آلی و واکنش ها	بوسنى	ولاديمير پريلوگ	1975
پژوهش روی ساختار borane ها که موارد ابهام پیوندهای	أمريكا	ويليام ليپسكام	1976
شیمیایی			
پژوهش روی ترمودینامیک غیرتعادلی به ویژه ارائه تئوری ساختارهای براکنده	روسيه	ايللي پريگو گين	1977
به خاطر مشارکت در درک مفهوم انتقال انرژی زیستی با ارائه تئوری کمواسموتیک	بريتانيا	ميچل پستكارد	1978
به خاطر توسعه کاربرد ترکی های دارای برم و فسفر در واکنش گرها برای تهیه ترکی های آلی	ألمان - بريتانيا	جورج ویتینگ هربرت.سی.براون	1979
مشارکت در تعیین توالی بازی در اسیدنوکلئیک	بريتانيا- آلمان	فردریک سانگر والتر کیلبرت	1980
پژوهش روی بیوشیمی اسیدنوکلئیک ها با نگاهی ویژه به DNA نوترکیب	أمريكا	پائول برگ	1980
او به صورت مستقل از رادولف هافمن فرضیه ای درمورد مسیر واکنش های شیمیایی ارائه داد	ژاپن	کی نیجی فوکی	1981
او به صورت مستقل از کینیچی فوکویی فرضیه ای در مورد مسیر واکنش های شیمیایی ارائه داد	راتسوا	رادولف هافمن	1981
ابداع میکروسکوپ الکترونی کریستالوگرافی و توضیحاتی که در ارتباط با ساختار کمپلکس های دارای پروتئین و اسیدنوکلئیک ارائه داد	ليتوانى	آرون کلاگ	1982
پژوهش روی واکنش های انتقال الکترون، به ویژه در کمپلکس های فلزی	كانادا	هنری تائوب	1983

علت برنده شدن	کشو ر	نام برنده جابره	تاريخ
ایجاد روشی برای تهیه ترکی های شیمیایی بر روی ماتریکس های جامد	آمریکا	رابرت بروس مری فیلد	1984
کامیابی های چشمگیر در ایجاد روش های مستقیم برای تعیین	أمريكا	هربرت.ای.هاپتمن	1005
ساختار بلورها	آمريكا	جروم کارل	1985
	کانادا	دودلی.اچ.هرش باخ	
پژوهش روی دینامیک فرایندهای پایه ای شیمیایی	آمريكا	جان.سي.پولاني	1986
	آمریکا	یان تی لی	
	آمريكا	كارل.جي. پدرسن	
توسعه و بکارگیری مولکول هایی که به سبب داشتن ساختار ویژه قدرت انتخاب گری بالا داشتند	امريكا	دونالد.جي.كرام	1987
فدرت المحاب درى بالا كاستند	فرانسه	جین ماری لن	
	آلمان	هارتموت مايكل	
به خاطر نصین ساختار سه بعدی یک مرکز واکنش گر فتوسنتتیک	آلمان	جان ديزونفر	1988
	آمريكا- آلمان	رابرت هابر	
	آمریکا	-11	
کشف ویژگی های کاتالیتبک RNA	كانادا	سيدنى آلتمن	1989
	آمریکا	توماس.آر.کش	
توسعه و ارائه تئوری و روش شناسی سنتز آلی	آمريكا	ایلیاس جیمز کوری	1990
مشارکت در ساخت اسپکتروسکوپی NMR و روش شناسی کاربرد آن	سوئيس	ریچارد .آر. ارنست	1991
پژوهش روی واکنش های انتقال الکترون در سامانه های شیمیایی	آمريكا	رادولف.ای.مارکوس	1992
ابداع روش PCR	آمریکا	کری.بی.مولیس	1993
مشارکت چشمگیر در بررسی جهش زائی الیگونوکلئوتیدی وابسته به جایگاه و توسعه آن برای پژوهش پیرامون پروتئین ها	کانادا	مایکل اسمیت	1993
مشارکت در پیشبرد شیمی کربوکاتیون	مجارستان- آمریکا	جورج.ای.اولا	1994

علت برنده شدن	کشو ر	نام برنده جابره	تاريخ
پژوهش روی اتمسفر از دیدگاه شیمیایی با توجه ویژه پیرامون شکل گیری و تجزیه اوزون	آمریکا- آمریکا هلند	اف .شروود رونالد ماریو.جی.مالینو پائول جی کروت زن	1995
كشف فلورن ها	آمریکا آمریکا – آمریکا	ریچارد .ای.اسمالی رابرت اف کرل هارولد کروتو	1996
کشف آنزیم انتقال دهنده یون با رام Na+/K+ ATPaseبرای نخستین بار به خاطر اثبات انزیماتیک بودن تهیه ATP	دانمارک بریتانیا- آمریکا	جنز.سی.اسکوو جان.ای.واکر پاتول.دی.بویر	1997
توسعه روش های محاسبه ای درشیمی کوانتومی	بريتانيا	جان.ای .پوپل	1998
ارائه نظریه تابع چگالی	اتریش	والتر كوهن	1998
پژوهش روی حالت گذار درواکنش های شیمیایی لباستفاده از طیف سنجی فمتوثانیه.	آمریکا- مصر	احمداچ.زی ویل (دومین مسلمان برنده جایزه نوبل علمی)	1999
کشف و تولید پلیمرهای هادی	نيوزلند آمريكا ژاپن	آلان دی مک دیارمید آلان جی هیگر هیدیکی شیراکاوا	2000
پژوهش روی واکنش های اکسایشی که به صورت کایرال کاتالیز می شوند.	آمریکا ژاپن آمریکا	کی.بری شارپلس رویجی نویوری ویلیام.اس.نولز	2001
ابداع روش های شناسایی و آنالیز ساختار ماکرومولکول های زیستی	آمریکا ژاپن	جان بی فن کوئیچی تاناکا	2002
بکار بردن روش NMR برای تعیین ساختار سه بعدی ماکرومولکول های زیستی در محلول ها	سوئيس	کرت ووتریچ	2002

علت برنده شدن	کشو ر	نام برنده جابره	تاريخ
کشف کلفال های آبی در غشای سلول ها	آمريكا	پیتر ایگره	2003
کشف ساختار کانال های یونی و بررسی آنها از دیدگاه حرکت شناسی	آمريكا	رودریک مک کینون	2003
	فلسطين اشغالي	آرون سيخانوئر	
کشف مسیر اضمحلال پروتئین به خاطر یوبی کوئیتین	مجارستان	آورام هرشکو	2004
	آمريكا	ایروین رز	
ابداع روش واکنش های جایکزینی دوکانه (metathesis) در	آمريكا	ریچارد.آر.اسچروک	1
سنتزهای آلی	أمريكا	رابرت.اچ.گرابز	2005
	فرانسه	ايوس چاوين	
بررسی ابعاد مولکولی نسخه برداری در یوکاریوت ها	آمريكا	راجر.دی.کورن برگ	2006
پژوهش روی مسیرهای شیمیای که بر روی سطوح جامد انجام می شوند	آلمان	گرهارد ارتل	2007
کشف پروتئین سبز فلورسانت GFP	أمريكا	مارتين جالفيل	
900 300 300 000 000 000 000 000 000 000	ژاپن	اوسامو شيمومورا	2008
کشف پروتئین سبز فلورسانت GFP	آمريكا	راجر.وای.تی سین	
	فلسطين اشغالي	آدا.ای.یوناث	
پژوهش روی ساختار و عملکرد ریبوزوم	آمريكا	توماس.ای.استیتز	2009
	آخریکا	ونكارتامان راماكريشنان	
پژوهش روی کاتالیز واکنش های cross couplings با عنصر	زاپن	آکیرا سوزوکی	
پررسان روی سایر و سال سای در استان الی پالادیوم در مسیر تهیه ترکیب های آلی	چین	ای ایچی نگیشی	2010
G. G. 45 7 44 7 7-175	آمريكا	ریچارد اف هک	
کشف کوازی- بلور ها	فلسطين اشغالي	دانیل شختمن	2011

منابع و مآخذ

- [5]. Hunter. G. K (2000). «Vital Forces: the Discovery of the Molecular Basis of Life, Academic Press».
- [6]. Schrodinger. E (1944).» What is life?» Cambridge University Press.
- [٧] اسربلوكي، محمد نبي (٠٨٣١). «حيات چيست پنجاه سال ديگر»، نشر مركز.
- [8]. Mullis . K, Faloona . F , Scharf. S, Saiki .R ,. Horn. G , Erlich. H (1986). «Specific Enzymatic Amplification of DNA in Vitro»: the Polymerase Chain Reaction. Cold Spring Harb Symp Quant Biol.;51 Pt 1:26373.
- [1]. Leroy. F (2000). «A Century of Nobel Prize Recipients» Chemistry, Physics, and Medicine, CRC Press; 1 Edition.
- [2]. Istvan. H (2002). «The Road to Stockholm: Nobel Prizes, Science, and Scientists», Oxford University Press: Oxford,
- [3]. Bliss. M(2000). «Discovery of Insulin», University of Toronto Press, Third Edition.
- [4]. Fant. K (2006). Alfred Nobel: «A Biography, Arcade Publishing»; Reprint Edition.

مینانادری ، رویا رحیمی وقار ، علی اکبر موسوی موحدی * ا

جكيده

با پیشرفت روز افزون علم و فناوری، امکان دسترسی سریع و آسان به منابع علمی و پژوهشی بروز در سراسر جهان فراهم شده است. یکی از راه های دسترسی سریع و آسان به منابع علمی از راه اینترنت است که در کنار مزایای آن، مضراتی نیز دارد. از جمله زیان آن می توان به سرقت ساده تر آثار علمی پژوهشگران توسط افراد سودجو اشاره کرد که این شیوه کار نیز رو به افزایش است. در این نوشتار کوتاه، به علل افزایش این سرقت علمی و ادبی و راه های جلوگیری از آن پرداخته می شود و از طرفی رهنمودهای لازم در باره نگارش نوشتارهای پژوهشی، با رعایت حفظ اصول اخلاقی ارائه می شود.

واژگان کلیدی: سرقت آثار ادبی، سرقت غیرعمد، سرقت از خود، نکته های مهم در نگارش نوشتار پژوهشی.

بيشگفتار

اصطلاح سرقت آثار علمی ۲ در سال ۱۹۲۰ میلادی به فرهنگ لغت انگلیسی وارد شد و در قرن بیستم میلادی به صورت عمل غیراخلاقی، نمایش یک کار دروغین، دزدی و منتشر کردن اندیشه یک پژوهشگر بدون نام بردن از صاحب اندیشه تعریف شد. در مفهوم جدید از این کلمه، به عنوان رفتار غیراخلاقی و سوء رفتار در پژوهش یاد می شود که در بسیاری از کشورها فرد مرتکب، بزهکار شناخته می شود. سرقت آثار ادبی دارای مفاهیم گوناگونی است و گستره ای از تکاپوها را در برمی گیرد.

به طور کلی، سرقت ادبی دارای دو بخش است: ۱- گرفتن عبارت ها و یا اندیشـه از یک منبع و مرجع علمی۲- نام نبردن از منبع و مرجع علمی که استفاده شده است.

در مورد بخش اول، برخی بر این باور می باشند که این کار همان اندیشه است اما، براستی این گونه نیست، چرا که خواندن و بررسی کردن کارهایی که دیگران پیشتر انجام داده اند، برای فهمیدن بهتر کاری که فرد می خواهد انجام دهد، ضروری است. این عمل، بی گمان سرقت نیست. البته، رونویسی از عبارت های دیگران(کپی برداری) به طور مستقیم کار صحیحی نیست، عبارت های دیگران را می باید فهمید، اما با ادبیات خودی آنرا باز نویسی نمود و به مرجع علمی اصلی آن رجوع با ادبیات خودی آنرا باز نویسی نمود و به مرجع علمی اصلی آن رجوع داد. سرقت ادبی به قسمت دوم تعریف مربوط می شود، زمانی که فرد از کارها و اندیشه های دیگران بدون نام بردن از منبع و مرجع علمی اصلی استفاده می کند. این عمل، بی احترامی و بی حرمتی به کسی است که اندیشه های نخستین و اصلی از آن اوست. این روش، سبب فریب اذهان عمومی می شود و این نگاه نا درست را ایجاد می کند که کارها

2 . Plagiarism

^{*} عهده دار مكاتبات، استاد، تلفن: ٦١١١٣٣٨١ (٩٨٢١)

دورنگار: ۹۸۲۱، ۲٦٤٠٤٦٨٠ (۱۹۸۲۱) پست الکترونیکی:moosavi@ibb.ut.ac.ir

۱. مرکز تحقیقات بیوشیمی و بیوفیزیک دانشگاه تهران، ایران.

و اندیشه های دیگران از آن فرد خاطی است .[۱]

اصول اخلاقي

۱- ابتکار /اصالت: وقتی یک نویسنده نوشتاری را برای نشریه پژوهشی-علمی می فرستد، این نوشتار می باید یک کار دست اول بوده نه اینکه جمع آوری کار دیگران باشد.اگر نویسنده (ها) از نتیجه های علمی و کلمه ها و ادبیات دیگران استفاده کنند، این کار بیان یا نقل قول دیگران است و جزء نوشتارهای پژوهشی و اصیل محسوب نمی شود. لازم به ذکر است، در صورتی که نویسنده ای نوشتاری را به شود. لازم به ذکر است، در صورتی که نویسنده ای نوشتاری را به یک زبان (برای مثال؛ زبان فارسی) در نشریه ای به چاپ رسانده است، نمی تواند همان کار چاپ شده را به زبان دیگری ترجمه نماید و برای یک نشریه علمی - پژوهشی ملی و یا بین المللی بفرستد و یا بر عکس . [۳٫۲]

۲- سرقت علمی و ادبی

نگارش نوشتار می باید خالی از هرنوع سرقت علمی، ادبی، تحریف و یا حذف مطالب برجسته باشد. سرقت علمی و ادبی به شکل های گوناگون می باشد و بعضی از نمونه های آن به شرح ذیل بیان می شود:

- رو نویسی از نوشتار دیگران و به نام خود چاپ کردن

- رو نویسی قسمت های مهم از نوشتار دیگران برای تفسیر نتیجه های پژوهشی که توسط دیگران بیان شده است.

- بر داشتن اندیشه های منتشر شده یا منتشر نشده دیگران، بدون ارجاع به نویسنده اصلی یا اجازه از او.

از نویسندگان انتظار می رود بروشنی اندیشه ها و کارهای دیگران را بیان کنند،حتی اگر این کار یا اندیشه به صورت واژه به واژه یا توضیحی بیان نشده باشد و به نویسنده اصلی استناد نمایند.

- امروزه، رو نویسی قسمت های مهم از نوشتار چاپ شده قبلی خود نویسنده در نوشتار جدید نویسنده سرقت علمی، ادبی محسوب می شود. سرقت علمی، ادبی از خود ۱ ، بسیارشایع است و گاهی نیز بدون قصد است،همانگونه که راههای زیادی برای بیان یک مطلب مشابه در موقعیت های متفاوت وجود دارد، به ویژه در مورد بخش روش ها که در یک نوشتار نوشته می شود.اگرچه، به طور معمول این امرحتی حق کپی رایت را که برای منتشر کننده محفوظ است، مختل می کند، هیچ توافق عامی وجود ندارد که آیا این موضوع شکلی از سو رفتار علمی است یا نه و يا چند تا از لغت ها مي توانند استفاده شوند تا به عنوان سرقت علمي، ادبی به حساب نیاید. به هر روش، هنگامی که یک کار علمی چاپ شده است، دیگر نمی توان همان مطالب چاپ شده و همان محتوا را به صورت یکجا و یا خرد خرد در نوشتارهائی که در آینده توسط همان نویسنده ها و دیگر نویسنده ها نوشته می شود، چاپ نمود. نویسنده ها مي بايد از بيان دوباره نوشته هاي قبلي خود تا حد امكان دوري كنند. - نویسنده نمی تواند از شکل ها و جدول های چاپ شده دیگران در نوشتارها در نوشتار خود به طور مستقیم استفاده نماید، مگر اینکه از انتشارات مربوط اجازه چاپ شکل را در یافت نماید و در زیر نویس

آن شکل می باید توضیح دهد که این شکل از کدام منبع بر داشته شده و با اجازه انتشارات مربوط بوده است.

- نویسنده نمی تواند مستقیم از ادبیات مقالات دیگران در مقاله خود استفاده نماید بلکه نویسنده می باید از مطالب دیگران بر داشت نماید و با ادبیات خود مقاله را نگارش نماید.

- نویسنده نمی تواند نوشتار چاپ شده قبلی خود را الگو قرار دهد ٔ و برای تدوین نوشتار تازه خود تنها داده ها و جدول های آن را تعویض نماید، بلکه هر نوشتار یک « نو یافته « تازه است و می باید از نخست با ساختار نو بنا شود و با ادبیات تازه نگارش شود.

حاوران نوشتار نمی توانند مطالب نگارش شده و یا اندیشه های نویسنده های نوشتار را قبل از چاپ برای مقاصد شخصی، پژوهشی خود و دیگران را استفاده نمایند [۹و۷و۳].

دلایل سرقت آثار ادبی

علت اصلی و دقیق سرقت آثار ادبی پیچیده است، چون کسی از درون فردی که این عمل نا شایست را انجام می دهد، خبر ندارد. اما، دلایل عمومی نیز وجود دارد:

نبود مهارت های پژوهشی: برخی از دانشیجویان و پژوهشگران و اقعا نمی دانند چطور از فهرست کتابخانه ها، منابع داده های مجلات و یا منابع مراجع دیگر استفاده کنند.برای کمک به این مشکل استادان می باید با برگزاری دوره های اَموزشی برای بدست آوردن این مهارت به اَن ها کمک کنند.

دشواری های ارزیابی منابع اینترنتی: برخی از دانشجویان و پژوهشگران نمی دانند چگونه منابع اینترنتی را ارزیابی و بررسی کنند و همین موضوع می تواند روی فرآیند پژوهش و داده های بدست آمده تأثیر گذار باشد.

ناتوانسی در مدیریت زمان و برنامه ریزی: بسیاری از پژوهشگران مدیریت زمان و مهارت های برنامه ریزی ندارند و چون نمی توانند در زمان مقرر نوشتار و کار خود را تحویل دهند، تحت تأثیر فشارهای روحی و روانی بیشتر برای سرقت ادبی و رونوشت از کار دیگران وسوسه می شوند.[2]

راهکارهایی برای دوری از سرقت علمی، ادبی

بررسی ها نشان می دهند که بیش از ٦٠ درصد دانشجویان نمی توانند بین سرقت آثار ادبی و نقل قول تفاوت قائل شـوند و این دشـوار،

^{1.} Self-Plagiarism

^{2.} Recycling of Previous Writings or Tempelet

^{3.}Unintentional Plagiarism

زمانی بزرگتر می شـود که دانشجویان به نقل قول از واژگان و روش های دیگران نیاز دارند. نبود توانایی در متفاوت دانستن سرقت ادبی و نقل قول اغلب به سرقت ندانسته منجر خواهد شد.

در طول ۳۰ سال گذشته، دولت ها سعی بر توسعه و باز تعریف سیاست های ناشی از بد رفتاری در پژوهش در مراکز پژوهشی داشته اند. هم اکنون، جوامع کوشش می نمایند تا از تمرکز بیش از حد به دزدی آثار ادبی بکاهند و بیشتر بر روی نرم افزارها و دستورکار های لازم برای تشخیص دزدی علمی – ادبی داشته باشند. [۹٫۵]

پیشنهاد راهکارهایی برای دوری از سرقت ادبی

- اگر نوشتار، در بر گیرنده مطالبی باشد که در گذشته منتشر شده است، می باید از نوشتاری که در دست است حذف شود و فقط به منبع علمی چاپ شده استناد گردد. نوشتار تازه، نباید همپوشانی زیاد با سایر نوشتارها داشته باشد. برای دسترسی به مطالب و شکل های همپوشان، www. Duplichecker.com ، Et Blast استفاده نمود. www.tineye.com

- نویسنده های نوشتارها، می توانند کارها و اندیشه های پیشین چاپ شده را در «گیومه «نقل قول نمایند و به منبع علمی مورد نظر هم استناد کنند. البته، نویسنده می باید از نقل قول زیاد از کارهای پیشین خود به منظور پر کردن شمار نقل قول های خودی دوری کند(استناد به خود)، همچنین نویسنده ها می باید از خودستایی دوری کنند که ممکن است فرآیند بررسی علمی را مختل کند. استناد به خود تا اندازه ای معنی دار است و بیش از اندازه یک روش منفی تلقی می شود.

- نویسنده هائی که به آئین نامه های دز دی های علمی، ادبی آگاهی ندارند، خوبست در کارگاه های نگارش نوشتارهای علمی شرکت نمایند.

آگاهی از آئین نامه های کپی رایت

این آئین نامه ها، به منظور محافظت از مالکیت اندیشه ها وضع شده است. بدین صورت که تکثیر اندیشه ها - کارها و مطالب دیگران بدون اجازه گرفتن از صاحبان آنها غیرقانونی می باشد و قابل پیگیری است. این آئین نامه ها ، این اندیشه را در پژوهشگران برمی انگیزد که تلاش های آنها قابل احترام و ارزشمند است. شکستن این آئین نامه ها از سوی پژوهشگران، می تواند به اخراج آنها و از دست دادن موقعیت کاری و پژوهشی آنها، پرداخت جریمه نقدی و حتی زندان رفتن از یک تا ده سال منجر شود . [3,۳]

۱- فرستادن و چاپ چند دفعه

نویسنده می باید نوشتار را همزمان تنها به یک نشریه برای بررسی بفرستد. در صورتی که همان نوشتار، در حال بررسی توسط یک نشریه می باشد، نمی توان همان نوشتار را به نشریه دیگری برای بررسی فرستاد.

نویسنده نباید به طور کلی نوشتار هائی را که در پژوهش های مشابه در مجله ها یا انتشارهای گذشته آمده اند، منتشر کند. فرستادن نوشتار

مشابه به بیش از یک نشریه به طور همزمان، رفتار غیراخلاقی را نشان می دهد و پذیرفتنی نمی باشد.

نویسندگان نباید بخشی یا کلی از کار مشابه را که به صورت نوشتار در آورده اند، در چندین نشریه به چاپ رسانند. هر نوشتار برای فرستادن به نشریه، می باید هویت نو داشته باشد نه اینکه از نوشتارهای گذشته رو نویسی شده باشد و با یک نام تازه فرستاده، و یا چاپ شود [۲٫۳].

۲– سیاست های فرستادن نوشتار

در صورتی که نوشتاری توسط سردبیر یک نشریه مردود اعلام شد، نویسنده نمی تواند همان نوشتار را بدون نظر خواهی از سردبیر، دو باره به همان نشریه بفرستد. نویسنده می باید پس از رفع خرده گیری ها، به نشریه دیگری با نام نوشتار تازه بفرستد.

نویسنده اصلی سعی نماید پیش از فرستادن نوشتار به سردبیر نشریه، آداب چاپ نشریه مورد نظر را رعایت نماید و پیش از فرستادن، ویراستاری ادبی انجام شده باشد. [3,2]

نویسنده اصلی سعی نماید نوشتار را برای ویراستار علمی - ادبی که آشنایی به موضوع علمی نوشتار را دارد و زبان مادری و ادبیات روز را می داند، بفرستد و پس از ویراستاری، نوشتار را به سردبیر نشر یه بفرستد.

۳- کشمکش های نویسند گان، ویراستارها، داورها و هیات تحریریه

نویسنده گان می باید از کشمکش های عاطفی و پنهان یا کشمکش های آشکار در قلمرو پژوهش های علمی حتی المقدور دوری کنند. کشمکش نویسنده ها در نگارش نوشتار اثر می گذارد و موجب ناخوشایندی خواننده های نوشتار می شود. این کشمکش ها، بر داوری نویسنده، ویراستار و داورها تاثیر می گذارد. بیشتر کشمکش ها، بی درنگ برای دیگران روشن می شود. ممکن است این موارد شخصی، تجاری، سیاسی،علمی یا مالی باشد. ممکن است دلبستگی های مالی دربر گیرنده کار گماری، سهام یا مشارکت در مالکیت امتیاز انحصاری، یا هر نوع انگیزه دیگری باشد، زیرا این موارد مایه از بین رفتن اطمینان می شود.

نویسنده ها می باید از هر کشمکش احساسی یا اظهار دلبستگی به داورها و یا ویراستارها دوری کنند. سردبیر و هیات تحریریه هر نشریه باید سعی نماید داورانی را برای ارزیابی نوشتار بر گزینند که هیچ سوگیری و یا کشمکشی با نویسنده گان نوشتار نداشته باشند، به زبان دیگر هر نوشتار می باید مورد ارزیابی درست علمی و داوری باز ا قرار گیرد. نویسنده ها می باید به محرمانه بودن فرآیند داوری و بررسی نوشتار احترام بگذارند.

سردبیر و یا هیات تحریریه هر نشریه می باید دادگر باشند و از انگیزه های غیر علمی و غیر عقلی در ارتباط با نویسنده ها و یا نشانی و وابستگی آنها از قبیل کشور، دانشگاه و یا پژوهشگاه مورد نظر پرهیز نمایند [۷٫۳].

سردبير و يا هيات تحريريه هر نشريه نبايد نام نويسنده ها را از نوشتار

1. Double-Blind Peer-Review

حذف نمایند و سپس برای داوران ارسال نمایند. این کار چندین مشکل دارد:

- داور مي بايد امين سردبير و يا هيات تحريريه باشد.

- داور می باید در ارتباط با نویسنده و یا نویسندگان جستجو (به صورت الکترونیکی و یا روش های دیگر) نماید که آیا نویسنده و یا نویسنده های نوشتار از کارآمدی مورد نظر برخوردارند یا خیر و یا داور می باید آگاه شود که نویسنده و یا نویسندگان در گذشته چنین کاری را چاپ نموده اند یا خیر.

- امروزه، در بیشتر داوری نوشتارها در جهان نام نویسنده و یا نویسنده ها در اختیار داور قرار می گیرد.

۴- همکاران نویسنده

نویسندگان نوشتار می باید مشارکت اثر گذاری درپژوهش، گفتگو وارائه نظر، نگارش و تعیین خط مشی نوشتار داشته باشند و در نتیجه های آن سهیم باشند. نویسندگان همکار می باید همگی نوشتار مورد نظر را قبل از فرستادن به سردبیری نشریه ببینند و بررسی نمایند. همفکری و همکاری نویسندگان همکار مایه بالا رفتن سطح نوشتار می شود و می تواند در قلمرو نشر علم تاثیر بهتری داشته باشد و پس از چاپ از استناد بیشتری بر خوردار باشد. [۳]

پیشنهادهای اخلاقی به سردبیر و داوران

انتظار می رود داوران انتخاب شده توسط سردبیری و یا هیات تحریریه از تخصص پژوهشی در موضوع داوری بر خوردار باشند و پیشنهادهای علمی ادبی مورد نظر خود را شفاف ، سازنده و مؤدبانه به نویسنده ها انتقال دهد.

انتظار می رود سردبیر نشریه هرچه زودتر نوشتار فرستاده شده توسط نویسنده (عهده دار مکاتبه) را ارزیابی شکلی و ویراستاری نماید و در صورت نیاز به باز نگری به عهده دار مکاتبه بفرستد تا پس از باز نگری به سردبیری بر گرداننده شود و سردبیر نوشتار مورد نظر را بی درنگ به داوران کارآمد بفرستد و از آنها در خواست نماید که نوشتار را در مدت چند هفته داوری کند و یا اعلام نمایند که از داوری این نوشتار معذور هستند. به هر روی، نباید نویسنده های نوشتار را در زمان طولانی از کار خود در نا آگاهی گذاشت و یا به تماس های آنها بی اعتنا بود.

داوران می باید نکته های ریشه ای توانمندی و نارسائی نوشتار و روش های علمی آن را تشخیص دهند و در مورد آنها نظر های خود را به نویسندگان انتقال دهند و با ریزبینی بالا روی کیفیت تفسیر نتیجه های نوشتار اظهار نظر کنند. نباید داوران به کلی گویی پرداخته و نویسندگان نوشتار را از دیدگاه و اظهار نظر خود محروم سازند و یا

با کلی گویی، نوشتار را مردود نمایند.

البته، لازم است که سردبیری و یا هیات تحریریه نشریه از ارزیابی های کلی گویی چشم پوشی نمایند و بر مبنای آن تصمیم نگیرند. بعضی از داوری ها تنها ویراستاری است و سردبیری و یا هیات تحریریه نشریه نباید این موضوع را فراموش نمایند، حتما» می باید نظر داوری را به نویسنده ارسال نمایند نه فقط ویراستاری را.

داوران و یا ویراستاران می باید از داده ها و محتوای نوشتار مورد داوری حفاظت نمایند و آن را به صورت امانت در نزد خود نگهداری کنند و هر گونه استفاده شخصی را خلاف اخلاق بدانند.

سردبیر و یا هیات تحریریه نشسریه می باید نظـر داوران را در باره نوشــتار مورد نظر، بی طرفانه بررســی نمایند و از گرایش و تعصب شخصی در داوری خودداری کنند. [۳]

تاوان ها

ســرقت علمی و ادبی، یک رفتار ناشایست اخلاقی است که می باید با آن برخورد قانونی شود.

در صورت مشاهده چنین عمل ناشایستی ، سردبیری نشریه می باید نوشتار را از نشریه حذف و فرد و یا افراد خاطی را در فهرست سیاه قرار دهند و به نویسندگان نوشتار هشدار داده و موضوع را برای مسئولان دانشکده و یا دانشگاه محل استقرار نویسنده و یا نویسندگان را اطلاع دهند. [۸٫۵٫۳]

نتيجهگيري

دزدی ادبی، به عنوان شکلی از بد رفتاری علمی است که کم و بیش تمامی سازمان های پژوهشی نسبت به آن اتفاق نظر دارند. لازم است پژوهشی خره است به آن اتفاق نظر دارند. لازم است پژوهشگرها همه احتیاط ها را انجام دهند تا به طور کامل مطمئن شوند که به اندازه کافی به کار دیگران آگاهی دارند و نقل قول ندانسته غفلت نشده است. نقل قول مناسب و استناد به منابع، احترام به پدید آوردندگان اندیشه ها و ارج نهادن به اندیشمندان و مالکیت اندیشه آنها است. باید توجه داشت یک نویسنده برای پنهان کردن سرقت ادبی خود زمان زیادی را صرف تفسیر و دگرگونی اندیشه ها و دادههای دیگران می کند که اگر همین زمان را صرف به نتیجه رساندن کار خود کند، می تواند بهترین کار را ارائه دهد.

پژوهشگران به عنوان اعضا جامعه پژوهشی باید قبل از انتشار، در صورت امکان نوشتن آثار دزدی شده را هشدار دهند و این مسئله را پیش از چاپ نوشتار گزارش نمایند. با انجام این رهنمود ها، پژوهشگران می توانند از پژوهش خود و دیگران حفاظت نمایند و تراکم دانش جامعه را با پایه های اخلاقی افزایش دهند و دیگران را بهره مند سازند.

^{1.} Peer-Reviewing

^{2.} Peer-Reviewers

منابع ومآخذ

Papers», McGraw-Hill's Concise.

[6]. Neill, U.S. (2007)» How to Write a Scientific Maser Piece», The Journal of Clinical investigation, No. 117 pp.3599-3602

[7]. www.etymonline.com.

[9]. Melissa.S, Nicholas.H, Steneck. N. (2011)» The Problem of Plagiarism, Elsevier ,Urologic Oncology: Seminars and Original Investigations, 29(2011) pp.90-94.

- [1]. www.ualberta.ca, «Why Students Plagiarize». [7] بهلولی. م (۹۸۳۱)»اخلاق در علم و فناوری» نشا علم شماره ۱، م ذحه ۳۳
- [3]. Kanwal, N.(2010) «Code of Ethics" the Official Journal of University Putra Malaysia Pertanika Journals, First Edition . http://www.pertanika2.upm.edu.my/jpertanika/index.htm
- [4]. Harris. R(2011)» Anti-Plagiarism Strategies for Research Papers». Virtual Salt site, Version Date: April 26, (2011), http://www.virtualsalt.com/antiplag.htm
- [5]. Ellison. C (2010)» Guide to Writing Research

مهدى بيات٬۱، صادق صالح زاده٬ ، محمد على زلفى گل ﴿١

چکیده

در این مقاله عملکرد پژوهشگران ایران طی سال های اخیر مبتنی برپژوهش های نمایه شده بر اساس جدیدترین اطلاعات پایگاه اطلاعات علمی و نمایه سازی اسکوپوس(Scopus) بررسی و با چند کشور همسایه به خصوص ترکیه و کشورهای پیشرفته مقایسه شده است. نتایج نشان می دهند که در سال ۲۰۱۱ ایران دارای ۳٤,۰۵۰ سند علمی و در مرتبه هجدهم جهان و کشور ترکیه با ارائه ۳۱,۱۰۰ سند علمی در این در مرتبه نوزدهم جهان قرار گرفته اند و در حال حاضر ایران در سال ۲۰۱۱ رتبه اول را در منطقه از لحاظ تعداد اسنادهای علمی نمایه شده در پایگاه اسکوپوس دارا می باشد. با لحاظ تعداد اسناد علمی نسبت به کل اسناد منتشر شده دنیا در این سال و همچنین علمی نماید نمودن نسبت جمعیت هر یک از این کشورها به جمعیت کل جهان نیز جمهوری اسلامی ایران با سهم ۲/۱۲ نسبت به ترکیه با سهم ۱/۲در مرتبه بالاتر بوده و قدرت برتر علمی منطقه در سال ۲۰۱۱ می باشد. این پیشگامی در سال ۲۰۱۲ تا تاریخ ۹۰/۱۱/۳ حفظ و ارتقاء نیز یافته است.

واژگان کلیدی: تحقق اهداف علمی سند چشم انداز ۲۰ ساله کشور، پایگاه اطلاعات علمی اسکوپوس، اسناد علمی.

*عهده دار مکاتبات، استاد، تلفن : ۸۲۸۲۸۰۷) (۹۸۸۱۱) ، دورنگار: ۸۲۸۲۸۰۷) (۹۸۸۱۱ +) ، پست الکترونیکی: zolfi@basu.ac.ir ۱. دانشگاه بوعلی سینا همدان، دانشکده شیمی، همدان، ایران. ۲. دانشگاه ملایر ، دانشکده علوم، گروه شیمی، ملایر، ایران.

مقدمه

هر اثر علمی محصول و مخلوق انسان است ، که از طریق آن دانش ذهنی، پژوهشی و تجربی هر فرد اعم از اندیشیمند، پژوهشگر و دانشمند به دانش عینی تغییر شکل می دهد و از تملک شخصی خارج شده و به دانش اجتماعی و بشری تبدیل می شود، به همین دلیل در علم مالکیت مطرح نیست و پس از انتشار، دیگران مجاز هستند از آن بهره مند گردند، آنرا ارزیابی نموده حک و اصلاح نمایند.

در مبانی دینی ما زکات علم را نشر آن می دانند، هر چه محیط و دایره انتشار بیشتر و بزرگتر و فراملی باشد، آن دانش و سند علمی اثر بخش تر بوده و می تواند در جغرافیای بزرگتری مورد ارزیابی و اثر بخشی قرار گیرد. امروزه دانش علم سنجی (Scientometrics) وظیفه ارزیابی اسناد علمی و تولیدات علمی را در مقیاس فرد، موسسه، شهر، کشور و دنیا به عهده دارد. اگر چه اسناد علمی از نظر ساختار و محتوا با هم قابل مقایسه نیستند ولی برای اندازه گیری و کمی نمودن تولیدات علمی بالاخره به معیار و یا معیارهایی نیاز است.

در حال حاضر تعداد اسناد علمی و ارجاعات به اسناد علمی ملاک اندازه گیری کمی و کیفی تولیدات علمی در دنیا می باشد. بنابراین در ادامه بر اساس تعداد اسناد علمی نمایه شده در یکی از بزرگ ترین پایگاه های اطلاعات علمی جهان به نام اسکوپوس وضعیت علمی و جایگاه جمهوری اسلامی ایران مورد بررسی قرار می گیرد.

بحث و نتایج

در طی چند سال گذشته به خصوص از سال ۱۳۸۶ که ابتدای شروع سند چشم انداز نظام جمهوری اسسلامی ایران بوده توجه زیادی به بررسی عملکرد و موقعیت کشور های مختلف، دانشگاه ها و ۲۲ شساخه مختلف علوم (تعیین شده توسط موسسات معتبر بین المللی) در زمینه تولید علم شده تا اینکه کشور بتواند در سال ۱۲۰۶ بر اساس چشم انداز رتبه نخست را در منطقه به دست آورد [۱۱-۱].

یکی از مسائل بسیار مهمی که در این سند بر آن تکیه شده جهش علمی ایران و افزایش تولیدات علمی است به طوری که بر اساس این سند قرار است که ایران در سال ۱٤٠٤ از مهم ترین رقیب خود در منطقه یعنی ترکیه پیشی گرفته و رتبه نخست علمی در منطقه را به خود اختصاص دهد.

در این نوشته علاوه بر مقایسه وضعیت علمی ایران و ترکیه، وضعیت علمی 20 کشوری که از لحاظ علمی مطرح بوده و دارای رتبه بالاتر می باشند بر اساس تعداد اسناد علمی نمایه شده در پایگاه نمایه سازی اسکاپوس و همچنین رده بندی آنها بر اساس تعداد اسناد علمی به نسبت جمعیت در سال ۲۰۱۱ مورد مطالعه واقع شده است. تحقیقات پیشین با توجه به حداقل سهمی که هر کشور می بایست، با توجه به جمعیت خود، از تولید علم در جهان داشته باشد مفهوم خط فقر علمی را ابداع نمودند[۱۲].

بنابراین جمعیت ایران تقریبا ۱٪ جمعیت جهان می باشد، بر اساس ایس نظریه وقتی ایران در زیر خط فقرعلمی قرار خواهد داشت که سهم آن از تولید علم جهان کمتر از ۱٪ باشد.

نتایج نشان داده است که سهم کشور های پیشرفته در تولید علم

چندین برابر سهم آنها از جمعیت جهان است. به طور مثال سهم کشورهای سوییس و آمریکا از تولید علم در جهان به ترتیب نزدیک به سیزده و شش برابرسهم آنها از جمعیت جهان می باشد[۱۲]. البته باید توجه نمود که آمار فوق مربوط به تولید علم این کشور ها در کل شاخه های علوم می باشد و در برخی از شاخه ها سهم آنها حتی به بیش ازبیست برابر سهم آنها نسبت به سهم جمعیت شان به جمعیت بان نیز می رسد. خوشبختانه بررسی ها نشان داده است که ایران از سال ۲۰۱۰ از خط فقر علمی عبور کرده و در سال های اخیر بطور نسبی رشد بسیار خوبی در تولید علم داشته است[10–11].

این نکته قابل توجه است که کشور های موفق در تولید علم در واقع همان کشور های پیشرفته ای هستند که بیش از دیگران مقاله در مجلات معتبر بین المللی منتشر می کنند. مسلما» ممکن است که برخی از مقالات منتشر شده مصداق تولید علم نباشند، اما بررسی عملکرد کشورها و شاخه های مختلف علوم در زمینه تولید علم با توجه به کل مقالات مجلات نمایه شده توسط پایگاه های معتبر بین المللی روشی ممکن، منطقی و عملی می تواند باشد.

بنابراین در این نوشته به بررسی میزان اسناد علمی نمایه شده از ایران در پایگاه اطلاعات علمی و نمایه سازی اسکوپوس در سال های ۲۰۰۹۲۰۱۱ می پردازیم. همچنین تولید علم در کشور ترکیه که با کشور جمهوری اسلامی ایران رقیب می باشد، در این سال ها با و بدون در نظر گرفتن جمعیت نیزمورد توجه و تجزیه و تحلیل قرارگرفته است.

جهش علمی ایران در سال های اخیر

بر اساس جدیدترین گزارش پایگاه اطلاعات علمی و نمایه سازی بین المللی اسکوپوس جمهوری اسلامی ایران در سال ۲۰۱۱ با ارائه بیش از ۳۵٬۰۱۱ سند علمی نمایه شده (تا تاریخ ۳۵٬۱۱۲۳) توسط این پایگاه رتبه هجدهم را در دنیا به خود اختصاص داده است. همان طور که در جدول ۱ مشاهده می گردد، بیشترین تعداد مقالات در سال های ۲۰۰۱–۲۰۱۱ مربوط به آمریکا، چین و انگلستان می باشد.

از طرف دیگر اگر جمعیت هر کشور را نیز درنظر بگیریم و تعداد اسناد علمی منتشر شده توسط هر کشور را بر جمعیت آن تقسیم نماییم، مشاهده می شود که آمریکا هر چند که بدون در نظر گرفتن جمعیت در رتبه اول علمی قرار دارد، اما با در نظر گرفتن این معیار به رده هجدهم در رده بندی جهانی می رسد و کشور کم جمعیت سوئد با ارائه ۳۳٬۳۶۰ سند علمی هر چند که از لحاظ فقط تعداد اسناد علمی نمایه شده در سال ۲۰۱۱ تنها یک رده بالاتر از ایران و در ده نوزدهم جهان قرار دارد، اما با در نظر گرفتن نسبت جمعیت این کشور به جمعیت جهان رتبه اول را از لحاظ تولیدات علمی در سطح جهان به نام خود ثبت می کند.

کشور ایران نیز در سال های اخیر رشد علمی بسیار خوبی را از خود نشان داده به طوری که در سال ۲۰۰۹ بدون در نظر گرفتن جمعیت و تنها بر اساس تعداد اسناد علمی نمایه شده رتبه بیست و یکم را در سطح بین المللی داشته و در سال ۲۰۱۰ با تعداد ۲۸٬۱٤۹ سند علمی نمایه شده رتبه نوزدهم را به خود اختصاص داده است.

شایان ذکر است که کشور ترکیه نیز در سال ۲۰۱۹ تعداد ۲۸٬۶۳۱ سند علمی در رتبه هجدهم در سال ۲۰۱۰ با ارائه ۳۱٬۶۱۲ سند علمی در رتبه نوزدهم و در سال ۲۰۱۱ با ارائه ۳۱٬۱۱۰ (تا تاریخ ۴۰/۱۱/۳) سند علمی باز هم رتبه نوزدهم را به خود اختصاص داده است (جدول سند علمی باز هم رتبه نوزدهم را به خود اختصاص داده سی شود که ایران در سال ۲۰۱۱ نسبت به سال ۲۰۱۰ دارای رشد علمی ۱۶ درصدی بوده که این واقعیت بیانگر و نمایانگر آن است که پژوهشگران ایرانی توانسته اند قبل از موعد تعیین شده در سند چشم انداز ۲۰ ساله از رقبای خود در عرصه علم و پژوهش پیشی گرفته و رتبه نخست را در منطقه به خود اختصاص دهند.

هر چند تمامی مواردی که تا به حال بحث شد تنها مربوط به مقایسه تعداد اسناد علمی بدون در نظر گرفتن جمعیت بود، اما اگر میزان جمعیت را نیز در سال ۲۰۱۱ برای این دو کشور در نظر بگیریم به طوری که کشور چین را به عنوان پرجمعیت ترین کشور دنیا به عنوان مرجع در نظر گرفته و تعداد اسناد علمی سایر کشورها را نسبت به جمعیت چین همگن سازی کرده و بر این اساس کشورها را رده بندی کنیم خواهیم دید که داده ها نشان می دهد که ایران در سال ۲۰۱۱ رتبه سی و چهارم را به دست خواهد آورد که این خود نمایانگر جمعیت پویای پژوهشی در ایران است. جمعیت جهان در سال ۲۰۱۱، ۲۵۲۱ داده های جدول شماره کل مقالات در این سال ۲۱۳۲ می باشد. داده های جدول شماره سنمی دهد ایران با لحاظ نسبت جمعیت خویش با سهم ۱۱/۲ ترکیه با سهم ۱۱/۲ نیز در مرتبه بالاتری قرار گرفته و در منطقه قدرت ترکیه با شدی می باشد.

راهکارها و راهبردهای پیشنهادی برای حفظ و ار تقاء کمی و کیفی رتبه علمی کشور:

از آنجایی که تعداد پژوهشگران به نسبت جمعیت یکی از شاخص های توسعه یافتگی کشورها مد نظر قرار می گیرد و همچنین افزایش تعداد پژوهشگران بالتبع در افزایش تعداد تولیدات علمی و همچنین تولید ثروت از دانش مؤثر است. تمامی موارد و داده های ذکر شده در جداول ۱ تا ۳ را می توان مربوط به توسعه و تأسیس دوره های تحصیلات تکمیلی وبه ویژه مقاطع دکتری و پسادکتری در کشور و افزایش جذب نیروهای قوی در جامعه هیات علمی در دانشگاه ها، مراکز آموزشی و پژوهشی کشور دانست، که با تلاش و پشتکار شبانه روزی خود باعث اعتلای پرچم نظام مقدس جمهوری اسلامی ایران در منطقه و جهان شده اند.

بدیهی است که تاسیس مقاطع تحصیلات تکمیلی به ویژه دوره های دکتری در دانشگاهها و مراکز آموزشی و پژوهشی در استانهای کشور هم منجر به تحقق عدالت آموزشی در سراسر کشور خواهد شد و هم زمینه ساز ادامه روند پرشتاب علمی می شود و از طرفی توزیع متوازن علمی را نیز در کل جغرافیای کشور شاهد خواهیم بود.

البته در تاسیس دوره های دکتری به مزیت های نسبی منطقه ای نیز باید توجه ویژه نمود، تا ساختار تولید علم کشور بهینه باشد. به عنوان مثال در استان های مجاور دریا رشته های کشتی سازی، دریا نوردی، شیلات

و غیره در استان های نفت خیز رشته های مرتبط، در استان هایی که توانایی کشاورزی دارند رشته های کشاورزی و مرتبط و بالاخره شرایطی مهیا گردد که در تمامی زمینه ها و رشته های علمی تولید علم داشته باشیم.

راهبرد مهم دیگر تجهیز کارگاه ها و آزمایشگاه ها در دانشگاه ها، مراکز آموزشی و پژوهشی کشور است. واقعیت این است که همان گونسه که علم جدید فناوری و تجهیزات نو را بوجود می آورد، برای تولید علم نو نیز به تجهیزات و فناوری جدید نیاز است و یک رابطه تعادلی بین علم و فناوری وجود دارد. علم امروز فناوری فرداست و فناوری امروز برای تولید علم فردا یک ضرورت غیر قابل انکار است. امروزه به اطلاعات علمی که از طریق تجربی از دستگاه های قدیمی که از استانداردهای لازم برخوردار نیستند اعتماد نمی شود و لذا ارزش انتشار ندارند چرا که برای گزارش یافته های پژوهشی، استانداردها و داده های به روز لازم است.

بنابراین برای تولید علم به روز و استاندارد، تجهیزات به روز و پیشرفته لازم است. این موضوع باعث شده است که کشورهای در حال توسعه از نظر سطح کیفی تولیدات علمی در مرتبه پایین تر از کشورهای پیشرفته، قرار داشته باشند. این ادعا بدین معناست که توزیع اسناد علمی در مجلات معتبر دنیا نیز فاکتور مهمی در ارزیابی وضعیت علمی افراد، موسسات و کشورها می باشد.

یعنی باید نسبت تولیدات علمی کشور در تمامی سطوح مختلف و در تمامی مجلات از بهترین تا نازل ترین مجلات توزیع متوازنی داشته باشد، اگر حضور اسناد علمی ایران در مجلات رده اول دنیا کم باشد، بیانگر این است که از نظر کیفی ما در رتبه مناسبی قرار نداریم. حضور فعال در بهترین مجلات علمی دنیا نیاز به تجهیزات ویژه ای دارد، از طرف دیگر ارتباط دانشگاه ها با صنعت و جامعه و حرکت در راستای نیازهای جامعه نیز نیاز به داشتن آزمایشگاه ها و کارگاه های مجهز دارد. امید است متولیان علمی و مدیران اجرایی کشور این واقعیت را مد نظر قرار داده و موجبات افزایش بهره وری و استفاده از توان دانشمندان، نیژوهشگران فراهم آورند. تا به همت والای دانشمندان پرتلاش بتوان ضمن حفظ رتبه نخست فعلی در منطقه در ارتقاء کمی و کیفی آن نیز گام های موثر تری برداشت.

نتيجهگيري

کسب رتبه نخست علمی در منطقه قبل از موعد مقرر در سند چشم انداز ۲۰ساله کشور یک افتخار بزرگ ملی است. این واقعیت بیانگر پیشگامی اندیشمندان، دانشمندان، پژوهشگران، و دانش پژوهان نسبت به سایر بخش های مسئول، از جمله وزار تخانه ها، نهادهای و سازمان ها، در سند چشم انداز ۲۰ ساله کشور می باشد. البته از نخبگان یک جامعه چنین انتظاری هم می رود که همیشه پیشتاز و الگو باشند. به پاس قدردانی از این عزیزان، مسئولین کشور باید در بسترسازی مناسب جهت استفاده هر چه بیشتر و افزایش بهره وری از ایشان از هیچ دریغ ننمایند، بویژه تجهیزات ابزار دقیق دستگاهی و بودجه تحقیقاتی مناسب و پهنای باند اینترنت پر سرعت برای جستجوی اطلاعات و محاسبات در اختیار آنها قرار دهند.

از جمله اقدامات تشویقی و انگیزه در راستای بستر سازی می توان به تجهیز آزمایشگاه ها، کارگاه ها و ارائه ملزومات آموزشی و پژوهشی اشاره نمود. اختصاص سهم بودجه پیش بینی شده پژوهشی از درآمد ناخالص ملی براساس برنامه پنجساله توسعه پنجم یکی از موثرترین اقدامات می تواند باشد.

دانشمندان، اندیشمندان و دانش پژوهان نیز برای فتح قله های علمی برتر نیاز به برنامه ریزی موثرتری داشته و ارتقاء سقف پرداز علمی ایشان یک ضرورت است. این به دین معنی است که ایشان باید با انتشار اسناد علمی خویش در ده درصد مجلات برتر دنیا و توزیع تولیدات علمی خویش در سطوح مختلف کمیت و کیفیت را با یکدیگر در تولید علم تلفیق نماید.

به نظر می رسد زیباترین لحظه های عمر هر دانشمند، زمانی باشد که تأثیر علم خویش را در رفاه، سلامت، قدرت، امنیت و ثروت بشر مشاهده نماید. بنابراین مسیر بعدی را که دانشمندان کشور باید آن را به پیمایند، حرکت در راستای تولید ثروت از دانش است. در این صورت، تولید علم با شدت بیشتری منجر به پیشرفت کشور خواهد شد. این آرزو نیاز به افرادی دارد که خط شکنی علمی نمایند و بخشی از توانایی علمی و تحقیقاتی خویش را در راستای پیشبرد تحقیقات کاربردی صرف نمایند، چرا که دومین هدف موجود در سند چشم انداز ۲۰ ساله کشور کسب رتبه اول فناوری در منطقه است. فن و فناوری به هنر به کار گیری علم گفته می شود.

در فناوری مالکیت مطرح است و فناوری قابل خرید و فروش بوده و منجر به تولید ثروت می گردد [١٦]. به امید روزی که دانشمندان، اندیشــمندان، دانش پژوهان کشــور در زمینه های فنــاوری هم مرز شکنی نموده و با پشتوانه علمی موجود سرانه ملی کشور را افزایش داده و دانش و ثروت تولید نماید. خوشبختانه با تاسیس پایگاه نمایه سازی جهان اسلام (ISC) بستر مناسب جهت نمایه کردن علوم بومی كشورهاي اسلامي مهيا شده و استخر دانش كشور شكل گرفته است. انتظار می رود با برنامه ریزی چکیده مقالات و رفرانس های مقالات بومی به زبان انگلیسی همراه با مقالات چاپ شده و نمایه شوند و با اتصال آنها به پایگاه های اطلاعات علمی و نمایه سازی دنیا نظیر ISI و SCOPUS بتوان توليد علم واقعى كشور هاى اسلامي از جمله جمهوری اسلامی ایران را به خوبی تجزیه و تحلیل نمود. با این اقدام بخشم از توان تحقیقاتی سایر کشورها ناخودآگاه در راستای موضوعات علمي بومي كشور ما بكار گرفته خواهد شد و در حقيقت آنها در تیم نیازهای تحقیقاتی بومی ما بازی خواهند کرد و پازل تحقیقاتی کشور ما را کامل خواهند نمود.

ضمن آنکه تعداد اسناد علمی کشور در پایگاه های اطلاعات علمی دنیا

افزایش چشم گیری خواهد یافت و کلام آخر انتظار می رود دانشمندان مسلمان بر اساس مبانی دینی خویش در ضبط، ثبت و انتشار یافته های علمی و پژوهشی خود اخلاق علمی را در کاملا رعایت نمایند، چرا که از تکرار ناسودمند در انتشار باید به طور جدی پرهیز نمود [۱۷].

علاوه بر کسب رتبه نخست علمی کشور در منطقه در مرحله بعدی برنامه ریزی برای کسب رتبه های برتر دانشگاه ها، مراکز آموزشی و پژوهشگاه های کشور در منطقه و جهان است.

در این رابطه بستر سازی خاصی لازم است، که به بخشی از آنها اشاره شد. راهبرد ساده و مهم دیگر هماهنگی با شیوه نمایه سازی مستندات علمی است. با توجه به اینکه در عصر انفجار اطلاعات دستیابی دقیق به سوابق افراد، دانشگاه ها و ... بدون سازماندهی اطلاعات دشوار می باشد، بهره مندی از دانش بشری انتشار یافته های پژوهشی در نشریات علمی توسط نمایه سازی ممکن می باشد و جستجو تنها در صورتی می تواند به بازیابی جامع ترین و مانع ترین مدارک و اسناد علمی منتهی شود، که اصول نمایه سازی توسط نویسندگان در درجه اول رعایت شود.

در نمایه کردن مستندات علمی، نویستندگان آن ها، اولین کسانی های هستند که باید اصول نگارش را در انتخاب اسامی و نشانی های آکادمیک رعایت نمایند تا نمایه سازی به صورت صحیح انجام پذیرد. با نمایه سازی صحیح است که دستیابی دقیق به سوابق علمی افراد و موسسات علمی، پژوهشی میسر شده و رتبه بندی واقعی کشورها، مراکز آموزشی و پژوهشی در سطح جهان تعیین می گردد. به دلیل عدم آشنایی برخی از نویسندگان با نام صحیح دانشگاه ها و مراکز تحقیقاتی، مقالات آنها در ذیل نشانی صحیح دانشگاه ها و مراکز متبوع خود نمایه نشده است به گونه ای که ایسن واگرایی و عدم وحدت رویه در ثبت نام مراکز آموزشی و پژوهشی به خصوص به زبان انگلیسی، جایگاه واقعی دانشگاه ها و پژوهشی به خصوص به زبان انگلیسی، جایگاه واقعی دانشگاه ها و پژوهشگاه های کشور را در رتبه بندی جهانی تنزل داده است ۱۸–۱۹].

برگزاری کارگاه های آموزشی در خصوص شیوه تدوین مستندات علمی، اخلاق علمی، تکنیک های نمایه سازی، اصول و ضرورت ارجاع و استناد می تواند مشکل فوق را برطرف نماید. کیفیت و سطح اسناد علمی چاپ شده کشور باید به گونه ای باشد، تا محققین داخل و خارج از کشور از اطلاعات علمی آنها استفاده نموده و به آنها ارجاع و استناد نمایند.

ضروری است که تعداد ارجاعات به اسناد علمی کشور هم سطح با افزایش تعداد کمی آنها باشد، در این صورت، رتبه نخست کیفی علمی کشور نیز بر اساس تعداد ارجاعات و استنادات در منطقه حفظ و ارتقاء خواهد یافت.

جدول ۱. وضعیت علمی کشورهای برتر تولید کننده علم دنیا در سال های ۲۰۱۰، ۲۰۱۹ و ۲۰۱۱

Rank ^a (2011)	Rank ^b (2011)	Country	Paper in 2011	Paper in 2010 Rank ^a	Paper in 2009 Rank ^a	Population in 2011
1	18	USA	486,649	509,091(1)	430,172(1)	311,050,977
2	36	Peoples R China	348,252	331,595(2)	295,687(2)	1,336,718,015
2 3	14	United kingdom	138,892	141,651(3)	130,942(3)	62,698,362
4	17	Germany	134,806	132,734(4)	119,413(4)	81,471,834
5	26	Japan	111,557	117,633(5)	113,035(5)	127,469,543
6	21	France	95,443	97,761(6)	90,956(6)	65,102,719
7	12	Canada	79,867	80,772(7)	76,124(7)	34,030,589
8	45	India	79,581	74,124(9)	61,946(9)	1,189,172,906
9	24	Italy	77,439	76,386(8)	72,887(8)	61,016,804
10	20	Spain	70,100	66,560(10)	61,203(10)	46,754,784
11	5	Australia	62,129	60,575(11)	54,333(11)	21,766,711
12 13	25 6	Korea south Netherlands	54,050 46,862	56,362(12) 44,756(14)	50,238(12) 41,375(14)	48,754,657 16,653,734
14	40	Brazil	45,372	46,724(13)	42,260(13)	203,429,773
15	16	Taiwan	39,030	38,344(15)	35,601(15)	23,071,779
16	37	Russia	34,193	36,454(16)	34,924(16)	138,739,892
17	1	Switzerland	33,340	31,578(17)	28,776(17)	7,639,961
18	31	Iran	34,059	28,149(19)	23,081(21)	77,891,220
19	34	Turkey	31,150	31,412(18)	28,431(18)	78,785,548
20	4	Sweden	28,759	27,508(21)	25,561(19)	9,088,728
21	29	Poland	26,389	27,774(20)	24,758(20)	38,441,588
22	11	Belgium	25,370	24,275(22)	22,662(22)	10,431,477
23	2	Denmark	18,424	16,729(25)	15,474(26)	5,529,888
24	13	Austria	18,414	17,366(24)	15,814(25)	8,217,280
25	42	Mexico	16,684	17,819(23)	16,807(23)	113,724,226
26	19	Greece	16,293	16,250(26)	15,926(24)	10,760,136
27	22	Portugal	15,478	14,064(31)	12,324(30)	10,760,305
28	3	Norway	15,014	14,353(29)	13,219(28)	4,691,849
29	7	Finland	14,632	14,400(28)	13,831(27)	5,259,250
30	23	Czech Republic	14,549	14,722(27)	12,275(31)	10,190,213
31	9	Singapore	13,663	14,354(30)	12,677(29)	5,246,787
32	38	South Africa				
			11,830	11,120(34)	10,047(33)	49,004,031
33	8	New Zealand	11,526	10,699(35)	9,929(34)	4,290,347
34	10	Ireland	11,419	11,197(33)	10,116(32)	4,670,976
35	39	Argentina	10,034	10,124(36)	9,327(36)	41,769,726
36	44	Egypt	9,845	8,770(38)	7,900(38)	82,079,636
37	30	Romania	9,580	11,883(32)	9,836(35)	21,904,551
38	43	Thailand	9,203	9,442(37)	8,127(37)	66,720,153
39	27	Hungary	8,476	8,163(39)	7,764(39)	9,976,062
40	35	Saudi Arabia	8,446	6,008(42)	4,034(42)	26,131,703
41	41	Ukraine	6,834	6,878(40)	6,565(40)	45,134,707
42	33	Chile	6,694	6,782(41)	6,228(41)	16,888,760
43	15	Slovenia	4,398	4,388(45)	4,179(43)	2,000,092
44	28	Slovakia	4,136	4,445(44)	3,937(44)	5,477,038
45	32	Bulgaria	2,888	3,471(43)	3,444(45)	7,093,635

مرتبه بر اساس تعداد مقالات چاپ شده هر کشور ${}^{\rm b}$ رتبه با لحاظ نسبت جمعیت هر کشور به جمعیت کل جهان ${}^{\rm c}$ داده ها استخراج شده در تاریخ (۹۰/۱۱/۳ ۲۵)

جدول ۲. مقایسه نوع اسناد علمی ایران و ترکیه در سال های ۲۰۰۹-۲۰۱۱

Document	Iran			Turkey		
	2011	2010	2009	2011	2010	2009
Paper	25,564	21,300	18,175	23,633	25,230	24,051
Conference	4,114	5,641	4,035	3,192	3,496	2,296
Article in press	3,149	397	320	2,500	940	831
Review	639	341	270	1,018	934	781
letter	342	275	90	858	370	145

جدول ۲. مقایسه نوع اسناد علمی ایران و ترکیه در سال های ۲۰۱۹-۲۰۱۹

Document			
	X (%)	P (%)	Sx
Switzerland	1.56	0.11	14.21
Denmark	0.86	0.08	10.85
USA	22.82	4.48	5.10
Iran	1.60	1.12	1.42
Turkey	1.46	1.13	1.29
Saudi			
Arabia	0.40	0.38	1.05
Peoples R			
China	16.33	19.24	0.85
Egept	0.46	1.18	0.39
India	3.73	17.12	0.22

(٪/X: نسبت مقالات هر كشور به مقالات كل جهان

نسبت جمعیت هر کشور به جمعیت کل جهان : $P(\slash\hspace{-0.4em}/)$

SX : نسبت مقالات نسبی به جمعیت نسبی

منابع و ما خذ:

[۱]- صبوری، علی اکبر.» (۱۳۸۱).» بررسی کارنامه پژوهشی ایران در سال ۲۰۰۲» رهافت، شماره ۲۸، صفحات ۹۵-۷۸.

[۲]- صبوری، علی اکبر. (۱۳۸۲) «مروری برتولید علم در سال ۲۰۰۳» رهیافت، شماره ۳۱، صفحات ۲۳-۲۱.

[٣]- صبوری، علی اکبر. (۱۳۸۳). «رده بندی علوم در ایالات متحده آم بکا» رهبافت، شماره ۳۳، صفحات ۵۸-2۹.

[3]-صبوری، علی اکبر و پورساسان، نجمه. (۱۳۸۳). "تولید علم ایران در سال ۲۰۰۶» ر همافت، شماره ۳۶ مفحات ۲۹-۹۰.

[0] - موسوی، میر فضل الله. (۱۳۸۳). «رتبه بندی تولید علم در پنجاه کشور اول جهان» مجله رهیافت، شماره ۳۲، صفحات ۵۷-۳۷.

[٦] - موسوى، مير فضل الله.(١٣٨٤). «احراز جايگاه نخست علمي در منطقه» رهيافت، شماره ٣٥، صفحات ٥٩.

[۷] - صبوری، علی اکبر.(۱۳۸٤).» ارزیابی مجلات ایرانی فهرست شده در موسسه اطلاعات علمی (ISI)» رهیافت، شماره ۳۱، صفحات ۲۲- ۵۲.

[۸] - موسوی، میر فضل الله. (۱۳۸٤).» چگونگی جهش علمی ایران به ده کشور اول تولید کننده علم در جهان» روزنامه همشهری، شماره ۳۹۲۳، صفحه ۲۹-۲۷.

[۹]- صبوری، علی اکبر و پورساسان، نجمه. (۱۳۸۵). « تولید علم ایران در سال ۲۰۰۵» ر هیافت، شماره ۳۷، صفحات ۵-2۹.

[۱۰] - صبوری، علی اکبر.(۱۳۸۵). «تولید علم ایران در سال ۲۰۰۹» رهیافت، شماره ۳۸، صفحات ٤٤-۶۰.

[۱۱] - صبوری، علی اکبر. (۱۳۸٦). «تولید علم ایران در سال ۲۰۰۷»

رهافت، شماره ۲۱، صفحات ۲۰–۳۵.

[۱۲]- صالح زاده، صادق، بیات، مهدی.(۱۳۸۷).» خط فقر در علم، کجا و چگونه؟» رهیافت، شماره ٤٦، صفحات ۲۶-۸۳.

[۱۳]-زلفی گل، محمد علی. «نگرش واقع بینانه به تولید علم در ایران» وبگاه هیات حمایت های کرسی های نظریه پردازی، نقد و مناظره، www.korsi.ir

[14].Moin, Mostafa, Mahmoudi. Maryam, Rezaei, Nima, Scientific output of Iran at the threshold of the 21st century, Scientometrics, Vol. 62, PP. 239-248, 2005.

[15].King, David A., The Scientific impact of nations, Nature Vol. 430, PP. 311-316, 2004.

[۱٦]-زلفی گل، محمد علی، (۱۳۸۳).» از ترویج علم تا تولید ثروت» رهیافت شماره ۳۳ صفحات ۱۱-۲۶،

[۱۷] - حری، عباس (۱۳۹۰) «اخلاق انتشارات علمی « انتشارات تخت جمشید پایگاه استنادی جهان اسلام (ISC) چاپ اول .

[۱۸] - زلفی گل، محمد علی . شیری، مرتضی، کیانی بختیاری، ابولفضل. (۱۳۸۶). اهمیت نمایه رعایت اصول نمایه سازی در مستندات علمی، رهبافت شماره ۳۵ صفحات ۲۱–۲۲.

[۱۹] - گل تاجی، مرضیه، علی نژاد چمازتکتی. (۱۳۹۰). «مطالعه آشفتگی نگارش نام دانشگاه های وزارت علوم تحقیقات و فناوری در پایگاه تامسون رویترز و یک دست سازی نام آنها» انتشارات تخت جمشید، پایگاه استنادی علوم جهان اسلام (ISC)، چاپ اول.

پژوهش و فنأوري

شبکه و خوشه های فناوری

حجت اله مرادي پور* '، معصومه داستاني'

چکیده

خوشه های فناوری ترکیب منسجمی از متخصصین، سرمایه های مخاطره پذیر، شرکت های با فناوری های برتر و زیرساخت های فیزیکی مناسب است که در مجاورت دانشگاه ها، پارکهای علم و فناوری و مراکز تحقیقاتی و در یک محدوده جغرافیایی مشخص با یک مدیریت بازار محور، محصولات و خدمات دانش محور را تولید می کنند. امروزه خوشه ها بعنوان مدلی برای توسعه اقتصادی مبتنی بر دانش مورد توجه قرار گرفته است. از این رو اقتصاددانان، خوشه ها و شبکه ها را بعنوان مزیت رقابتی جهانی و دارای نقش ویژه و کلیدی در بهره وری سریع از دستاوردهای نوآوری می دانند. در تعریف خوشه بر عواملی همچون؛ تمرکز جغرافیایی و تشابه حوزه فعالیت، تخصص و تقسیم وظیف که منجر به ارتباط درون گروهی و وابستگی های درونی نهادها/شرکت های فناور می شود، تاکید می نماید.

نکته مهم در خصوص توسعه اقتصادی جوامعی که شرایط ایجاد خوشه ها را مهیا نموده اند به مزایا و نتایج حاصل از شکل گیری خوشه برمی گردد. عمده ترین مزایا شامل؛ افزایش فرصت های کار و فعالیت، تبادلات دانش و در نتیجه هم افزایی دانش بین شرکت ها، افزایش سطوح تخصصی، تقویت روابط اجتماعی نام برد.

اصل بنیادی این است که خوشـه های منطقه ای این توانایی را دارند که اگر ایجاد شبکه های قوی اجتماعی کسب و کار تشویق گردد و نوآوری های موفق و مزیت های رقابتی ترویج می یابند. به همین خاطر بسـیاری از کشـورها در تدوین سیاسـت های خود روی ترویج نوآوری و شکل گیری خوشه های صنایع/فناوری مرتبط در مناطق مختلف در جهت ایجاد رقابت و رشد اقتصادی تمرکز نموده اند.

واژگان کلیدی: خوشه، خوشه فناوری، شبکه، اقتصاد دانش بنیان، مزیت رقابتی، پارک علم و فناوری

*عهده دار مکاتبات، تلفن: ۸۲۲۳۳٤۸۰ (۹۸۲۱) دورنگار: ۸۲۲۳۳٤۷ (۹۸۲۱) پست الکترونیکی: h_moradipour@locallan.msrt.i پست الکترونیکی: h_moradipour و برنامه ریزی فناوری- وزارت علوم ، تحقیقات و فناوری.

شبکه و خوشه های فناوری

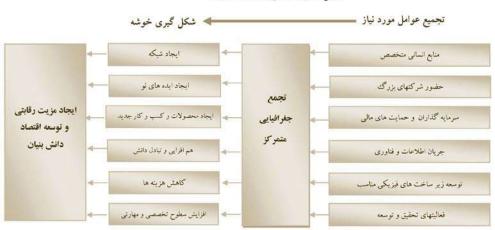
مقدمه

امروزه دانش آفرینی تنها راه موفقیت در صحنه های رقابتی بین المللی است. فعالیت های اقتصادی دانایی محور، نماد توان تولید دانش و فناوری هر کشور بوده و یکی از شاخص های سنجش توان علمی و فنی آن بشمار می آید. بدون شک شناسایی و تشویق نوآوری ها و فن آفرینی های برتر در ایجاد فضای اقتصاد دانش محور بسیار نقش آفرین بوده و زمینه توسعه ملی مبتنی بر دانایی خواهد بود [۱] که رسیدن به این هلف با ایجاد و توسعه خوشه های فناوری میسر خواهد شد. خوشه های فناوری ترکیب منسجمی از متخصصین، دانشگاه ها، پارکهای علم و فناوری، مراکز تحقیقاتی ، سرمایه های مخاطره پذیر، شرکت های با فناوری های برتر و زیرساخت های فیزیکی مناسب است که در یک محدوده جغرافیایی مشخص با یک مدیریت بازار محور، محصولات و خدمات دانش محور را تولید می کنند. لازمه موفقیت خوشه های فناوری و نوآوری، همکاری گروهی اعضا است که با ایجاد شرکت های نویا و تکیه بر ایده های جدید میسر می گردد.

با توجه به اهمیت موضوع، در این مقاله سعی شده است علاوه بر مرور مفاهیم اساسی شبکه، خوشه و مزیت های آن با تبین بسترهای لازم برای شکل گیری خوشه های فناوری، موانع توسعه خوشه های فناوری در کشور شناسایی شود.

مفهومخوشه

همزمان با دهه ۹۰ قرن بیستم ، در حوزه تجارت نوین و با استفاده از مزیت بنگاه های اقتصادی و صنعتی، واژه «خوشه» مطرح شد. اولین بار Michael E. Porter و در سال ۱۹۹۰ واژه خوشه های صنعتی و در سال ۱۹۹۸ واژه خوشه های منطقه ای را مطرح نمود. در زیر تعاریف متعددی از واژه خوشه توسط محققین ارائه شده است:


• تمرکز جغرافیایی نهادها و شرکت های فناوری مرتبط با یکدیگر در یک حوزه خاص [۲].

• تمرکز جغرافیایی بنگاهها را خوشه گویند. چنین تمرکزی باعث برخورداری از صرفه جوئی های بیرونی می گردد. وجود خوشه همچنین باعث جذب کارگزاران بازارهای دوردست شده و به ظهور خدمات تخصصی در زمینه های فنی ، مالی و مدیریتی کمک می کند.

• خوشه ها گروه هایی از شرکت ها و سازمان های قرار گرفته در یک منطقه جغرافیایی مشخص هستند که به وسیله وابستگی های درونی یک ارتباط درون گروهی از محصولات و خدمات را تشکیل می دهند[ع].

مزاياي خوشه

عموما» مزیت و منافع وسیعی برای کسب و کار شرکت های مستقر در خوشه وجود دارد که عبارتند از افزایش تبادلات دانش و سطوح تخصصی ناشی از تعاملات نزدیک شرکت ها و در نتیجه هم افزایی دانش بین آنها، ایجاد شبکه و افزایش توانایی در بهره برداری تحولات فناوری و تسهیل حل مشکلات از طریق به اشتراک گذاشتن تجربه مانند از فناوری های مشابه، توسعه زیر ساخت های فیزیکی مانند ارتباطات، امکانات حمل و نقل، خدمات پشتیبانی حرفه ای، حقوقی و مالی، بهبود جریان اطلاعات در درون خوشه و در نتیجه استفاده شرکت های مستقر در خوشه از مهارت ها و منابع یکدیگر بعنوان مکمل جهت انجام پروژه های پیچیده مشترک، تقویت روابط اجتماعی در میان ورودی های خوشه و افرادی که موجب ایجاد ایده ها، محصولات و خدمات کسب و کار جدید و هم چنین افزایش فرصت های کار و فعالیت می شود. مجموع عوامل فوق موجب توسعه اقتصاد منطقه می شود. [0]

شكل شماره 1: فرايند ايجاد خوشه

- 1.Cluster
- 2. Industrial Clusters
- 3. Regional Clusters

خوشهفناوري

خوشه های فناوری مجموعه ای از شرکت های کوچک و بزرگ هستند که در اطراف یک نهاده یا سازمان پژوهشی بزرگ مجتمع شده اند، تاکید بر خلاقیت و نو آوری، سرریز فناوری با هدایت دولتی از ویژگی های این مجموعه است که آنها را تبدیل به ساختار های بسیار موفق در دنیای اقتصاد و فناوری کرده اند[۲].

به طور دقیق تر خوشه فناوری نشان دهنده روابط شرکت هایی است که از طریق مشتر کات و پیوندها در محصولات، خدمات، نهاده ها، فناوری ها، ارتباطات و... که به صورت عمودی و افقی با هم در ارتباط هستند[۲]. در تعریفی دیگر خوشه فناوری تمرکز جغرافیایی شرکت های فناوری متشکل از رقبا، تامین کنندگان، عرضه کنندگان خدمات و مشتریان است که معمولا در اطراف مراکز علمی تحقیقاتی و دانشگاهها مستقر هستند[۷].

شبکه سازی در حوزه فناوری

شبکه سازی در حوزه فناوری دستور کار اول کشورهای در حال توسعه جهان و تجربه موفق کشورهای توسعه یافته است. کشورهایی نظیر کره جنوبی، چین، مالزی، فرانسه و سوئد از جدیدترین کشورهایی هستند که پیشرفت خود را مدیون شبکه سازی در حوزه فناوری می باشند. از اینرو شبکه هایی با گرایش فناوری در سطح دنیا گسترش یافته اند تا در سطوح پیشرفته تر پدید آورنده خوشه های تخصصی هر فناوری باشند.

با توجه به اهمیت شبکه سازی و تاثیر آن بر تعدیل چگالی تجهیزات و دانش در کشور، حوزه فناوری طی سالهای اخیر تلاش هایی در راستای شبکه سازی انجام داده که تجربیات موفق و نا موفقی را پدید آورد، از این میان می توان به ایجاد شبکه پژوهش و فناوری استان اصفهان در سال ۱۳۸۲، استان یزد در سال ۱۳۸۵، شبکه مراکز رشد استان تهران در سال ۱۳۸۸ اشاره نمود.

مزاياي شبكه

سورنسن استدلال می کند که شبکه ها مزایایی به شرح زیر ارائه می دهند: [۸]

- كاهش هزينه هاي معاملاتي
- افزایش پتانسیل نوآورای ، دانش و تجربه در خصوص نیازهای اعضای شبکه
- افزایش جریان اطلاعات فشرده و ایجاد فرصت های کسب و کار حدید
 - تضمین همکاری های داوطلبانه و انعطاف پذیر
 - تضمین دسترسی منابع تحت کنترل و تعهد اعضای شبکه
- افزایش ظرفیت یادگیری جمعی جهت ایجاد تبادلات و انتشار دانش ضمنی
 از طریق اتصالات سریع و اعتماد توسعه یافته در میان اعضای شبکه

تفاوت خوشه و شبکه (Network)

چنان که گفته شد، خوشه مجموعه ای از واحدهای کسب و کار است که در مورد آنها ٤ مشخصه «تمرکز جغرافیایی»، «گرایش صنعتی مشترک»، «روابط همکاری» و «چالش ها و فرصتهای مشترک» وجود داشته باشد. اما شبکه (Network) به گروهی از واحدها اطلاق می شود که برای تولید یک کالا یا انجام یک پروژه خاص با هم در ارتباط بوده، همدیگر را تکمیل کنند و برای مواجهه با مسألهای واحد، تخصص یابند و تقاضایی را با تکیه بر توانایی های خود یوشش دهند.

همه خوشه ها الزاماً برخوردار از ٤ مشخصه اصلی یاد شده هستند. در حالی که چنین امری در شکل گیری شبکه ها ضرورت و الزام ندارد. مهم ترین تفاوت های شبکه و خوشه را می توان به شرح زیر برشمرد: [۹]

- شبکه ها در راستای تولید یک کالا یا خدمت و یا انجام یک پروژه خاص (معمولاً با هدف هزینه کم تر) شکل می گیرند، در حالی که خوشه ها خدمات تخصصی مورد نیاز و مرتبط را به یک منطقه جغرافیایی جذب می کنند،
- شبکه ها محدودیت عضویت دارند، در حالیکه خوشه ها ماهیتاً عضویذیری نامحدود دارند،
- شبکه ها بر مبنای یک توافق یا پیمان کاری با هم فعالیت می کنند در حالی که خوشه ها بر مبنای «ارزش اجتماعی» ^۲ و سرمایه های اجتماعی بومی شکل می گیرند.
- «همکاری» " پایه فعالیت شبکه هاست در حالی که خوشه ها هم به همکاری و هم به رقابت نیاز دارند.
- شبکه ها دارای یک هدف تجاری یا فعالیت واحدی هستند در حالی که خوشه ها «چشم اندازهای گروهی مشترک» دارند.

شکل گیری یک شبکه می تواند مقطعی بوده و سپس از بین برود. برای عضویت در یک شبکه، استقرار در محل جغرافیایی خاص ضروری نیست. تعداد زیادی شبکه می تواند ذیل یک خوشه نیز شکل گیرد. به همین ترتیب، واحدهای زیرمجموعه یک خوشه می توانند به صورت شبکهای با واحدهای خارج از خوشه در ارتباط باشند [۱۰].

معرفی چند خوشه های فناوری درهسیلیکون

دره سیلکون معظم ترین و با سابقه ترین خوشه علم و فناوری دنیا است که در ایالت کالیفرنیا آمریکا واقع شده است. هسته اولیه این کریدور علم و فناوری پارک تحقیقاتی استانفورد بوده است. از دهه ۸۰ به بعد با فراهم شدن زمینه های سرمایه گذاری مخاطره پذیر و تکامل سایر اجزاء مورد نیاز تشکیل یک خوشه واقعی علمی و فناوری ؛ زمینه های تبدیل این منطقه بزرگ کریدور علم و فناوری فراهم شد[۱۱].

- 1.Technology cluster
- Social value
- 3. Cooperation

شبکه و خوشه های فناوری

خوشه چند رسانه ای مالزی

درسال ۱۹۹۲ ایده راه اندازی این خوشه چند رسانه ای در مالزی به مرحله اجرا در آمد. این خوشه نقطه عطف توجه دولت مالزی به صنایع و خدمات با فناوری برتر گردیده است. توسعه اقتصاد دانایی محور مالزی بدلیل توجه ویژه به این خوشه بوده است [۱۲].

خوشه ICT بنگلور

خوشه بنگلور هند فضای مناسبی برای انجام انبوهی از تحقیقات در زمینه ICT ایجاد نموده است. در و سیلیکون هند معروف است. در حال حاضر این خوشه دارای ۱۵۰۰ شرکت IT و شرکت های بسیاری در زمینه الکترونیک می باشد. این شرکت ها طیف وسیعی از خدمات در خصوص فناوری اطلاعات از جمله توسعه نرم افزار، برنامه ریزی، نگهداری، مدیریت امکانات و آموزشی به مشتریان را ارائه می دهند [۱۳].

بحث ونتيجه گيري

همانگونه که گفته شد خوشه های فناوری قادر خواهند بود از طریق مزایایی که ایجاد می کنند، موجب توسعه حوزه دانش و اقتصاد مبتنی بر دانس در محیط پیرامون خود گردند. از جمله این مزایا؛ ایجاد فرصت های کار و فعالیت، شکل گیری فعالیت های شبکه ای و هم افزایی علم و مهارت بین واحدهای خوشه، توسعه زیرساخت های فیزیکی ارتباطات و اطلاعات می باشد.

به نانچه مشتاق برخوداری از مزایای فوق باشیم، لازم است که نسبت با تأمین ملزومات شکل گیری خوشه ها اهتمام نمائیم. برای این منظور نیاز به ایجاد زیرساخت های فیزیکی و مالی لازم، همچون؛

حمایت های مالی، توسعه سازمان های تحقیق و توسعه، ایجاد زیر ساخت های اطلاعات و ارتباطات با سرعت مناسب، ایجاد فضای کالبدی لازم، بوجود آمدن سازمان های موسس و حمایت کننده، و هم چنین موارد غیر مادی از جمله؛ سیاست گذاری مناسب، تصویب قوانین حمایتی، فرهنگ سازی در راستای فعالیت جمعی و گروهی و درک منافع جمع در کنار منافع شخصی، همسو نمودن سیاست های کشور جهت ایجاد خوشه از جمله حمایت از اختراعات و نوآوری، حقوق مالکیت معنوی است.

همانگونه که گفته شد، در کنار تجارب ارزشمند در زمینه ایجاد مراکز فناوري و شبکه هاي پژوهش و فناوري، شاهد تصويب قوانين حمايت از فناوری و نوآوری در اسناد بالادستی کشور از جمله سند چشم انداز ۲۰سـاله کشــور، برنامه های ٥ ساله توسعه و نقشه جامع علمی کشور هستيم. اما عليرغم اين مزيت ها نمي توان ادعا نمود كه خوشـه هاي فناوري در كشور توسعه يافته و با موفقيت خود موجب رشد و توسعه اقتصادی محیط پیرامون خود شده اند. به نظر می رسد مشکل از دو جهت قابل بررسی است؛ اول اینکه ضعف فرهنگ کارگروهی و تحمل رقبای حرفه ای که موجب عدم توانایی تبدیل رقیب به شریک است و دوم فقدان نگرش سیستمی و آینده نگری در مدیریت منابع که موجب مديريت جزيره اي سازمان ها و امكانات موجود گرديده است از جمله عوامل متعددی هستند که توسعه خوشه های فناوری در کشور را با مانع روبرو كرده است. اميد است در صورت ايجاد خوشه هاي تخصصي فناوری در عرصه فناوری های حیاتی کشور از جمله؛ نانو،بیو، نفت، پتروشیمی و پلیمر، لیزر، هوافضا، کشاورزی، الکترونیک و ... بصورت منطقه ای در کل کشور بوده و در قدم بعدی با ایجاد ارتباط شبکه ای بین این خوشه ها، موجب هم افزایی در نتایج حاصله باشیم. troduction to its Conceptual World.

[9].Nordin, S. Tourism(2003) Clustering & Innovation, Paths to economic, growth and evelopment, European Tourism Research Institu, Mid – Sweden University.

[۱۰]. عیسی منصوری(۱۳۸۷).» پروژه های توسعه خوشه ای(برنامه ها و دستاوردها) سازمان صنایع کوچک و متوسط.

- [11].Zhang. Junfu (2003) . High-Tech Start-Ups And Industry Dynamics In Silicon Valley. Public Policy Institute Of California.
- [12].Ramasamy. Bala & Others .(2002).Malaysia Leap Into The Future: An Evaluation Of The Multimedia Super Corridor .The University Of Nottingham Research Paper Series. International Business Economics, Study Material Series, No. 8, Aalborg University;
- [13].Basant,R. (2006), "Banglor Claster: Evolution, Growth and Challenges"Indian Institute of Management Ahmedabad further Developments". Prepared for NRW Conference on Clusters, Duisburg, Germany, 5 Des 2003.

منابع وماخذ

[۱]. پـارک ها و مراکز رشــد علم و فنــاوری در دولت نهم(۱۳۸۷). ،فصلنامه تخصصی گزارش جمهور، شماره۶۶.

- [2]. Porter, M. (1998), 'Cluster and the New Economics of Competition'. Harvard Business Review, Vol. 76, issue.6, pp.76-90.
- [3]. Humphrey, J. and Schmitz, H. (1998); « Trast and inter firm relations in developing and Transitioning economics.» The Journal of Development studies. 34(4) 32-61
- [4].Ketels, C. (2003); "The Development of the cluster concept Present experiences and
- [5]. Baptista R. and Swann P. (1998), Do firms in Cluster Innovate More? Research Policy, 27(6): 525-540

[7]. کسری حسنی، علی اکبر موسوی موحدی(۱۳۸۳) « خوشه های فناوری « فصلنامه رهیافت ، شماره ۲۳، صفحه ۶۳

- [7]. Pouder, R. and C. H. St. John, (1996).»Hot spots and blind spots: Geographical clusters of firms and innovation,» Academy of Management Review, Vol.21, No. 4, pp. 1192-1225.
- [8]. Sorensen O.J. (1996), The Network Theory: An In-

مبانى ومنطق آموزش فنأورى

على اكبر خسروي' ، كامبيز پوشنه' ، ابوالفضل كياني بختياري * ٢

چکیده

توسعه آموزش فنآوری در آموزش عمومی یکی از شاخص های مهم در راستای توسعه کشور ها محسوب می شود. چندین دهه است که رشته ای بنام آموزش فناوری در مقاطع کارشناسی، کارشناسی ارشد و دکتری در برخی از کشورها با رویکردی بین رشته ای راه اندازی شده است. آموزش فنآوری یک زمینه علمی و مطالعاتی است که توانایی انسان را درشکل دهی و تغییر دنیای فیزیکی درراستای تحقق نیازها از طریق دستکاری مواد و ابزار به کمک فن و تکنیک بالا می برد. به عنوان یک رشته آموزشی، هدف آموزش فنآوری، یاد دهی دانش و فنونی است که توسعه سواد فنآوری را از طریق ارتقاء فعالیت های عملی و آزمایشگاهی برای دانش آموزان ایجاد نماید. آموزش فنآوری در بسیاری از کشورهای توسعه یافته در قالب یک درس همجوار در آموزش عمومی از مقطع پیش دبستان آغاز می شود و تا مراحل تحصیلات عالیه ادامه می یابد. به کمک آموزش فنآوری، روش های حل مساله، روش های پرورش خلاقیت، ایجاد و تقویت ذهن تحلیل گر و تمامی عادات و مهارت های مفید و اثر گذار در زندگی آموزش داده می شود. آموزش فنآوری بصورت درس مجزا و نهمجوار در آموزش عمومی از منطق و پشتوانه علمی فلسفی و روانشناختی برخوردار است. از نظر روانشناختی آموزش فنآوری یک نورینه علمی هوشمند است که می باید از طریق در گیر کردن ذهن فراگیران و پرورش فنون حل مساله، فن های خلاقیت، تفکر و یادگیری، آنها را وادار به انجام فعالیت نماید تا از طریق این فعالیت ها بتواند به شکل دهی محیط پیرامون و اثر گذاری بر محیط مبادرت ورزند. از فظر فلسفی نیز آموزش فنآوری، مهارت آموزی صرف نیست. یکی از لوازم اساسی در ایجاد فهم و نگرش درست نسبت به رابطه متقابل فنامی و و اجتماعی است.

این مقاله بدنبال آن است تا با بیان این مبانی توجه سیاست گذاران و برنامه ریزان فنآوری را به اهمیت آموزش فنآوری جلب نماید.

واژگان کلیدی: فناوری، اَموزش فناوری، تاریجچه اَموزش فناوری، مبانی روانشناختی فناوری، مبانی فلسفی فناوری، رفتار فناور.

*. عهده دار مکاتبات ،کارشناس ارشد علوم تربیتی ، تلفن/ دورنگار:۹۸۲۱) ۸۸۷۸۳۱۰۹) پست الکترونیکی: info@fast-iran.ir ۱. دانشگاه آزاد اسلامی واحد تهران مرکزی. ۲.بنیاد پیشبرد علم و فنآوری در ایران.

مبانی و منطق آموزش فنآوری

مقدمه

امروزه فناوری نماد تلاش بشر در دستیابی به زندگی بهتر تلقی می شود و اهمیت آن چنان است که بخش اعظمی از توسعه کشور ها نیز بر اساس دستاورد های علمی و فناوری آنها ارزیابی می شود.

در واقع می توان گفت که امروزه فنآوری نمادی از رفاه و قدرت ملی و بین المللی محسوب می شود. کشورهای پیشرفته جهان، توجه به تولید فنآوری را در سرلوحه فعالیت های خود قرارداده اند، بگونه ای که این رویکرد در برنامه های درسی ملی آنها از مقاطع پایه تا پیشرفته مشهه د است.

بنابراین بیان و تفکیک تعاریف و مفاهیم سیر تاریخی مطالعات مربوط به آموزش فنآوری و نیز توجه به مبانی و رویکرد های روانشناختی و فلسفی آن می تواند اهمیت این موضوع را برای برنامه ریزان آموزشی کشور دو چندان نماید.

تعاريف

تعريف فنآوري

فنآوری یا تکنولوژی ترکیبی است از دو واژهٔ یونانی: تخنه به معنای هر آنچه که در طبیعت بطور مستقیم وجود نداشته باشد و لوژی به معنای معنای معنای هر آنچه که مبتنی بر عقل و منطق باشد. واژهٔ فنآوری راهی بس طولانی را در طول تاریخ پیموده، تا بدین شکل در ادبیات مدرن امروزی مطرح گردیده است. در طول تاریخ واژهٔ فنآوری را می توان به انحاء مختلف در زبانهای گوناگون مشاهده نمود. در یونان (Υ (Υ (Υ (Υ) « Υ)

تعريف فنآوري آموزشي

جمیز براون و همکاران در کتاب فنآوری رسانه ها وروش ها، فنآوری آموزشی را چنین تعریف کرده اند:

فنآوری آموزشی فراتر از کاربرد ابزار و وسایل است.بدین ترتیب فنآوری آموزشی بیشتر از مجموعه قسمتهای تشکیل دهندهٔ آن است که عبارت است از روش منظم طراحی، اجرا وارزیابی کل فرآیند تدریس ویادگیری با استفاده از هدفهای بخصوص و بهره گیری از یافته های پژوهش در روانشناسی وارتباط انسانی وبکارگیری ترکیبی از منابع انسانی وغیر انسانی به منظور ایجاد یادگیری مؤثرتر،عمیق تر و پایدارتر»در تعریف دیگری که از سوی انجمن فنآوری ارتباطات آمریکا ارائه شده است: «فنآوری آموزشی فرایندها ارائه نظریه ،عمل طراحی، تهیه،استفاده، مدیریت وارزشیابی فرآیندها

ومنابع یادگیری» تعریف شده است[۲].

تعاریف متعددی در زمینه فناوری آموزشی وجود دارد اما در مورد این دو تعریف صاحبنظران اشتراک نظر بیشتری دارند.

فنآوری آموزشی همچون یک علم کاربردی(فنآوری) با بهره گیری از یافته های تمام علوم نسبت به حل مسائل آموزش اقدام می کند [7].

در حال حاضر متخصصان فناوری آموزشی این فناوری را به عنوان یک راهکار عملی جدید ودر قالب آموزش الکترونیکی،چندرسانه ها و فرارسانه ها مورد استفاده قرار می دهند.

تعریف آموزش فنآوری ً

آموزش فنآوری که موضوع مورد نظر این نوشتار است یک زمینه علمی ومطالعاتی است که توانایی انسان درشکل دهی و تغییر دنیای فیزیکی درراستای تحقق نیازهای انسان از طریق دستکاری مواد و ابزار به کمک فن و تکنیک بالا می برد.

به عنوان یک رشته آموزشی، هدف آموزش فناوری، یاد دهی دانش و فنونی است که توسعه سواد فنآوری را از طریق ارتقاء فعالیت های آزمایشگاهی برای دانش آموزان منجر شود. آموزش فنآوری یک رویکرد نوآورانه است که فراگیران را درمتن نیازها درگیر می کند[۲].

تاریخچه آموزش فنآوری^۷

آموزش فنآوری دربسیاری از کشورها، زائیده و برخواسته از رشته هنرهای دستی و مهارهات های فنی است.اساس و ماهیت آموزش فنآوری به سال های ۱۹٦٤ بر می گردد و بطور مشخص در کارهای دور ، اولسون، وارنر، و زیل و کار های سایر صاحب نظران آموزشی در این دهه این موضوع مشهود است. در گذشته برخی از افراد کلاس های کاری که در آموزش فنآوری مطرح بودند را تحت عنوان شاپ می نامیدند، در حقیقت واژه کارگاه آموزشی 9 نیز به همین منظور بکار برده می شود [۳-۳].

امروزه دانش آموزان آموزش فنآوری عموما» درکارگاه ها کار می کنند و فعالیت های آزمایشگاهی انجام می دهند.البته در عصر کنونی در مدارس از واژه لب^{۱۱} به معنی آزمایشگاه استفاده می شود. انگلستان نخستین کشوری است که مفهوم نوین فنآوری را دربرنامه درسی ملی مدارس گنجاند.

ازسال ۱۹۸۹ آموزش فنآوری برای اکثر فراگیران از مقاطع پایه اول (۵ تا ۱۱ سالگی) اجباری شد. همزمان، آموزش فنآوری اطلاعات نیزازمقطع پایه اول یعنی ۵ سالگی تا ۱۳ سالگی اجباری گردید. مواد درسی مدارس فنآوری در بریتانیا در آغاز شامل حوزه های هنرهای سنتی، دستی، طراحی ، کار با مواد، رسم فنی، کار با چرخ خیاطی و تهیه غذا و بطور خلاصه بر مبنای پرورش مهارت های خیاطی

- 6 . Educational Technology
- 7 .Technology Education
- 8. Shop
- 9 .Workshop
- 10. Lab

- 1.Techne
- 2. .Logie
- 3. Tekhn
- 4. Taksat
- 5. Tekton

مبانى و منطق أموزش فنأورى

زندگی با تاکید بر اقتصاد خانگی ٔ بود و بتدریج به ســوی رویکردها و استانداردهای نوین آموزش فنآوری متمایل شد[۷].

آمریکا در سال ۱۹۹۰، فرانسه ۱۹۹۱، هلند و سوئد در سال ۱۹۹۸ در برنامه های درسی خود بر آموزش مفاهیم و محتوای آموزش فنآوری تاکید نمودند. آمریکا همچنین بطور جدی و مصمم در سال ۲۰۰۶ برنامه درسی خود را متحول و موضوع آموزش فنآوری در آموزش عمومی را تمام مقاطع تحصیلی با تاکید بر اشاعه شاخص های استاندارد محتوای آموزش فنآوری که توسط انجمن بین المللی آموزش فنآوری و بنیاد علمی آمریکا تدوین شده بود، مورد توجه ویژه قرار داد. [۷]. به هر حال انجمن آموزش فنآوری داشته است.

درحال حاضر نیر انجمن طراحی و فنآوری انگلستان یکی ازمهمترین و موثر ترین انجمن های انگستان در زمینه آموزش فنآوری به حساب می آید. در آمریکا نیز انجمن آموزش فنی و حرفه ای بزرگترین انجمن آموزش ملی است که از آموزش فنآوری پشتیبانی می نماید و همه ساله نسبت به بهنگام سازی شاخص های استاندارد آموزش فنآوری و سواد فنآورانه اقدام می نماید.

مبانى تربيتي وروانشناختي آموزش فنآوري

در اواخر قرن هجدهم در آموزش و پرورش به فرد یادگیرنده توجه زیادی معطوف شد. نظریات کمینیوس و روسو اصالت مطالب درس جای خود رابه اصالت فرد یادگیرنده داد. پیشتر برنامه های آموزشی و درسی بر محور اصالت مطالب درسی بود. به تدریج و با گذشت زمان ، علمای علوم تربیتی درباره مراحل رشد استعدادها و علاقه های فرد یادگیرنده مطالعاتی را انجام دادند و نظریات خود را مطرح کردند.

دیویسی تحت تأثیر ویلیام جیمز که پایه های فلسفه تجربی را بنیاد نهاده بود - اعتقاد داشت که پایه و اساس آموزش باید تجربه باشد بنابراین ، وظیفه مربیان و برنامه ریزان درسی است که کار خود را استفاده از منابع و وسایل معنادار و مورد علاقه فراگیران شروع کنند. مجموعا» این طور تشخیص داده شده بود که در برنامه ریزی باید به نیازها و علایق فرد یادگیرنده توجه وافی مبذول شود. برنامه درسی باید به گونه ای تنظیم شود که به دانش آموزان کمک کند تا در حل مشکلات مربوط به زندگی خود موفق شوند.

از نظر روانشُناختی، آموزش فنآوری منطبق با نظریه کسب و تولید دانش است که این کارازطریق آموزش با رشته ها و زمینه های دارای ساختار منطقی محقق می شود.[۱۳-۸].

ازمنظر برونر ساماندهی و طراحی برنامه درسی بر اساس ساختارمنطقی رشته های علمی صورت می پذیرد. وی معتقد است که تکامل ذهن مرهون ۳ دوره تکاملی مهم بوده است. در ابتداء انسانها در ساختن ابزارهایی که به تقویت توانایی های حرکتی آنها کمک می کرد، توفیق یافتند؛ قرنها بعد گروه دوم ابداعات نمایان شد و باردیگر

الگوی تکامل انسان را تغییر چشمگیری داد و آخرین گروه ابداعات انسان چیزهایی را شامل می شوند که به قول برونر ، توانایی های عقلانی را تقویت می کنند . اینجا سیستم های نماد و نظریه ها هستند و زبانها وسیستم های کامپیوتری را شامل می شوند. [12].

تقریبا» همه فعالیت های انسان درحال حاضر با کمک فناوری انجام می گیرند. این فناوری، قابلیت های انسان را به مقدار زیاد غنی می سازند. دانش هر پدیده خاص تنها متکی به حقایق موجود نیست بلکه بستگی به مجموعه ای از وقایع و مجموعه ای از اصول مفهومی نهان در آن رشته است. بنابراین آموزش فناوری باید با در نظر گرفتن این مفاهیم و ایجاد مجموعه های بهم مرتبط صورت بپذیرد [۳]. فناوری را می توان بعنوان یک زمینه علمی هوشمند معرفی کرد که منطبق بر معبار است:

۱. یک ساختار سامان یافته دانش که دارای انسجام است .

۲.به فعالیت های انسان بر می گردد و انسان را برای حل مسائل، مورد خطاب قرار می دهد.

 ۳. به انسان آینده توجه دارد شرایط را برای تحقق ایده های آنها فراهم می نماید.

از نظر روانشاختی فنآوری یک زمینه علمی هوشمند است که می باید از طریق در گیر کردن ذهن فراگیران و پرورش فنون حل مساله، فن های خلاقیت، تفکر و یادگیری، آنها را وادار به انجام فعالیت نماید تا از طریق این فعالیت ها بتواند به شکل دهی محیط پیرامون و اثر گذاری بر محیط مبادرت ورزد.لذا در برنامه های درسی فنآوری شکل ارائه و اجرای برنامه بسیار مهم است. هر گونه کوتاهی نسبت به نحوه اجرا و شکل فعالیت ها به کیفیت برنامه لطمه می زند ؛ بنابراین ، تدوین فعالیت ها و محتوای برنامه های درسی فناوری باید بنابراین ، تدوین شعالیت ها و محتوای برنامه های درسی فناوری باید با در نظر گرفتن شکل و اجرای جذاب آن باشد . برای فراگیران هم محتوا و هم چگونگی ارائه آن مهم است .

مطالب کتاب درسی فناوری باید از طریق برنامه های خوش ساخت و با هدف و آگاهی از ویژگی های دانش آموز ، بر او تاثیر بگذارد. بهبود کیفی برنامه های درسی فنآوری به میزان دقت در طراحی آنها بستگی دارد . در صورتی که این برنامه ها اهداف روشنی داشته باشند و با توجه به ارتباط منطقی طولی و عرضی طراحی شوند (یعنی در طول دوره هدفی را به طور منسجم و طی مراحل منطقی دنبال کنند و در ضمن با بقیه برنامه های هم خوانی داشته باشند) ، اجرای آنها موفق تر خواهد بود .

خلاصه کلام این که فنآوری یک زمینه یا رشته هوشمند ذهنی است که براساس معیارهای خاص می تواند در راستای ایجاد فرصت برابر برای توسعه ذهنی فراگیران در برنامه های درسی لحاظ شود.

مِبانی فلسِفی فناوری و آموزش فناوری

آمـوزش فنآوری جایگاه مهمی در تعلیــم و تربیت امروز جهان دارد

1. Home Economy

و این امر ناشی از جایگاه انکارناپذیری است که فنآوری در عرصه زندگی کنونی بشر یافته است[۱۵]. اما ، همچنان که اندیشیدن و تصمیم گیری در باب هر عنصر جزئی از تعلیم و تربیت ، بدون قراردادن آن در چارچوب بنیادی فلسفه تعلیم و تربیت میسر نیست ، سخن گفتن از آموزش فنآوری نیز بدون نگریستن به آن در چارچوب فلسفه تعلیم و تربیت ممکن و مطلوب به نظر نمی رسد.

آموزش فنآوری باید در پرتو فلسفه فنآوری یعنی از منظر فلسفه تعلیم و تربیت نگریسته شود. سطحی ترین فهم از «آموزش فنآوری « این است که کسی گمان کند مقصود از آن آموختن مهارت های معین به فراگیران است.

نگریستن به آموزش فنآوری، از منظر فلسفه فنآوری، آن را در گستره ای قرار می دهدکه نخستین نتیجه آن بی اعتبار ساختن تصورات ساده انگارانه ای از نوع است ، درحالی که مفهوم فنآوری فراتر از مهارت آموزی است .

مفهوم فلسفه فنآوري

فنآوری پدیده ای بشری است و همچون سایر پدیده های بشری و طبیعی ، موضوع پرسش و اندیشه فلسفی قرار می گیرد . سابقه این گونه پرسش ها ، به آغاز ظهور اندیشه فلسفی ، یعنی به اندیشه های فیلسوفان یونانی ، باز می گردد . بویژه ، ارسطو با تقسیم عقل به نظری و عملی جایگاه معرفت شناختی فنآوری را به نحوی معین ساخته بسود. تفکیک عقل نظری و عملی تصنعی و غیر قابل توجیه است ، اما براساس این تقسیم، فنآوری در عرصه عقل عملی قرار می گیرد . باتوجه به جایگاه برتری که ارسطو برای عقل نظری قائل بود، فنآوری – نسبت به اندیشه های نظری – منزلتی فروتر می یابد . البته ، ارسطو میان مهارت محض (تخنه) و عقل عملی (فرونسیس) تفاوت قائل می شدد . در حالی که «تخنه» تنها ناظر به خود فعالیت ها و مهارت های عملی درجریان یک حرفه است ، «فرونسیس» ناظر به نوع معینی مهارت هایش را در پیش می گیرد . از نظر فلسفی ۳ دیدگاه نسبت به فنآوری وجود دارد که در ادامه بدان پرداخته می شود[۱۲].

رویکرد خنثی بودن فنآوری

یکی از تصورات عمده در فلسفه فنآوری، این است که فنآوری را امری طبیعی ، خنثی درنظر می آورد . طبق این تصور ، فنآوری بخشی از طبیعت آدمی است . انسان ، همچنان که برای رفع نیازهای خود از اندام های خویش استفاده می کند. ابزارها و وسایلی را نیز به کار می گیرد یا می آفریند تا بهتر و موثرتر به این امر اقدام کند. به تعبیر مک لوهان فنآوری به منزله بسط اعضای بدن آدمی و پشتیبانی برای ضعف های زیستی طبیعت آدمی است[۱۷]. در این دیدگاه ، فنآوری همچنان که طبیعی است ، به لحاظ ارزشی ، خنثی نیز تلقی می شود . رشد و تحول فنآوری ، تابعی از امور فرهنگی ، اجتماعی و ارزشی محسوب نمی شود .

براساس این دیدگاه درفلسفه فنآوری ، مسئولیت درزمینه فنآوری ، درمقام بکارگیری آن مطرح است نه درمقام تولید یا پدید آوردن و این

ازنتایج خنثی دانستن فناوری است [۱۷].

رویکردفرهنگی - تک ارزشی بودن فنآوری

در مقابل دیدگاه اول ، گرایشی وجود دارد که در آن ، فنآوری نه به صورت امری طبیعی و خنثی ، بلکه به منزله امری ارزشسی در نظر گرفته می شود. بر اساس این دیدگاه توسعه فنآوری تابعی از امور فرهنگی ، اجتماعی و ارزشی است. [۱۸].

هابرماس از دوگونه علاقه وعمل در آدمی سخن می گوید: علاقه و عمل فنی یا ابزاری وعلاقه و عمل ارتباطی ، این دو گونه عمل آدمی را نه چون اجزای نظام اجتماعی بلکه چون دو چارچوب انتزاعی فراتجربی در نظر می گیرد که حاکی از ویژگی های پایدار انسانی است . عمل ابزاری در ارتباط با طبیعت و به صورت الگو برداری از طبیعت جلوه گر می شود و محمل آن نیز علم و فنآوری است

رویکـرد طبیعی، فرهنگی، چند ارزشـی بودن فنآوری

هرچند فناوری ها توسط انسان تولید می شود اما کارکردها ، آثار و نتایج آنها گاه از حدود انتظار و پیش بینی تولید کنندگان آنها نیز فراتر می رود. بنابراین ، فناوری از خصیصه مهمی برخوردار است که همان بروز تدریجی ویژگی های مصنوعات بشری است . [۱۹].

بروود باتوجـه به چنین روابط پیچیده ای میان فنــآوری و امور اجتماعی و فرهنگی ، نمی توان برخلاف رویکردهای اول و دوم فنآوری را خنثی و یا تک ارزشــی و در تقابل با فرهنگ دانست . برهمین اساس است که ماهیت چند ارزشی فنآوری موردتوجه قرارگرفته است.

آموزش فنآوری در پرتو فلسفه فنآوری

از آنجا کـه رویکرد مورد قبول رویکرد فنـاَوری چون امری طبیعی - فرهنگی - چند ارزشـی اسـت، بنابراین در آمـوزش فناَوری باید ملاحظات زیر در نظر گرفته شود[۱٦]:

١. آموزش فنآورى، مهارت آموزى صرف نيست.

محدود نمودن آموزش فنآوری به مهارت آموزی نشانگر بد فهمی نسبت به فنآوری است . به علاوه ، اکتفا کردن به آموزش مهارت های عملی صرف ، نمی تواند آسیب ها و شکنندگی احتمالی فنآوری نسبت به سایر بخش های فرهنگی و اجتماعی را کنترل کند.

آموزش فنآوری ، مستلزم فراهم آوردن نگرشی جامع نسبت به ماهیت فنآوری است .

یکی از لوازم اساسی آموزش فنآوری ایجاد فهم و نگرش درست نسبت به ماهیت فنآوری است. آنچه در رویکرد سوم در مورد خصایص فناوری ، جایگاه آن در طبیعت آدمی ، رابطه متقابل آن با امور فرهنگی و اجتماعی ، چند ارزشی بودن آن ، وخصیصه بروز تدریجی آن ، مطرح شد اموری است که می توان آنها را در فراهم آوردن چنین نگرشی مورد استفاده قرار داد.

در ارتباط با دانش آموزان نیز تأمین این نگرش بخش لازمی از آموزش فنآوری است تا به موازات آموختن ذهنیت و رفتار فن محور، فهم

مبانی و منطق آموزش فنآوری

عميقى نيز نسبت به فنآورى بيايند.

آموزش فنآوری باید متشکل از اجزایی برای ایجاد گرایش های اجتماعی، اخلاقی، و جهان شناختی و سواد همه جانبه فنآورانه باشد.

نتيجهگيري

آموزش فنآوری از مقاطع شکل گیری شخصیت فراگیران یعنی در مراحل اولیه آموزش بصورت موضوع همجوار آغاز می شود و برنامه های حل مساله، تفکر خلاق و رفتار های فنآور در فراگیر تقویت می شود. این روال در تمام مقاطع تحصیلی در قالب کتاب» آشنایی با فنآوری» در جوار آموزش عمومی ادامه می یابد.

در بررسی اهداف، روش ها و محتوای آموزش فنآوری کشور های توسعه یافته این نکته استنباط شده است که این کشورها به مقوله آموزش فنآوری از در مقاطع آغازین و متوسطه بصورت موضوع مجزا اهمیت زیادی قائل می شوند و همین نکته نیز باعث شده است که از نظر شاخص دستیابی به فنآوری، این کشورها از رتبه بالای برخوردار باشند.

با توجه به این نکته که آموزش فنآوری درآموزش عمومی جمهوری اسلامی ایران بصورت در هم آمیخته با موضوعاتی همچون علوم، ریاضی، هنر و در مقاطع بالاتر با هدف حرفه آموزی در قالب حرفه و فن و یا نظام کار و دانش ارائه می شـود، بنابراین پیشنهاد می شود متولیان تعلیم و تربیت جمهوری اسلامی ایران به این نکته توجه بیش از پیش داشته باشد که دوران آموزش دوران هزینه کردن فرصت های فراگیران برای دست یابی به شخصیت متعادل، با تفکر انتقادی، پرسشگر، خلاق، نوآور، کارآفرین، و با رفتار فنآور است. فنآوری و رفتار فناًور یک رویکرد همه جانبه و استفاده از همه افکار و ابزاز برای طرح مساله، حل مساله، پرورش خلاقیت و نوآوری در عرصه های مختلف است. بدین ترتیب رفتار فنآور با لحاظ آموزش غیر رسمی رایانه و یا توسعه صرف فناوری اطلاعات در تعلیم و تربیت محقق نمى شود؛ بلكه آموزش رفتار فناور علاوه بر اينكه بايد در دروس پایه بصورت در هم تنیده ادامه داشته باشد، می باید بصورت درس مجزا تحت عنوان» آشنایی با فنآوری» از مقاطع آغازین تا مقاطع عالى لحاظ گردد.

منابع ومآخذ

هم.

[۱۰] شعاری نژاد، علی اکبر (۱۳۷۳)روان شناسی رشد، انتشارات اطلاعات، تهران، ص. ۲۵.

[۱۱].شکوهی، غلامحسین(۱۳۷۲)»مبانی و اصول آموزش و پرورش». انتشارات آستان قدس رضوی.

[۱۲].صفوی، امان الله (۱۳۶۱) «روند تکوینی و تطبیقی تعلیم و تربیت جهانی در قرن بیستم»، انتشارات رشد.

[۱۳].علاقه مندان، جعفر (۱۳۸۱) «مفهوم آموزش فنآوری در آموزش عمومی»، مجله نو آوریهای آموزشی، شماره ۱، سال اول، یاییز ۸۱.

[14]. Brunner, J.S. (1960)» The Process of Education. Cambridge».

MA: Harvard University Press.

[۱۵]. زمانی، بی بی عشرت (۱۳۸۰)» آموزش فنآوری در برنامه درسی آموزش عمومی کشور های توسعه یافته و در حال توسعه.

[۱٦]. باقری، خسرو(۱۳۸۱) «مبانی فلسفی فنآوری»، مجله روانشناسی و علوم تربیتی، سال سی و دوم، شماره ۱، ۱۳۸۱ص ۹۸.

[17]. Mcluhan, M(1964)»Unerstanding Media: The Extension of ma. New York McGraw-Hill.

[۱۸] باقری، خسرو (۱۳۷۷)» تربیت حرفه ای در بستر دیدگاه اسلام» فصلنامه حوزه و دانشگاه ، ص ۱۶ – ۱۵ .

[19]. Habrmas ,Y(1979)»Technology and science as «Ideology « in Toward a Rational Society» . London : Heinemann.

[1]. Mitcham, C. (1994)» Thinking through Technology: the Path between Engineering and Philosophy, Chicago University Press, P. 11.

[7].فر دانش، هاشم (۱۳۸۵) «مبانی تکنولوژی آموزشی»، انتشارات سمت.

- [3]. Devore, P.D. (1965) » Technology: An intellectual Discipline: Journal of Workforce Education and Development Vol. 3, No. 3.
- [4]. Olson, D.W. (1958)» Technology and Industrial Arts. Champaign University of Illinois, College of Education, Office of Field Services.
- [5]. Warner, W.E. (1965)» A Curriculum To Reflect Technology», Industrial Arts and Vocational Education, 25(2), 33–36.
- [6]. Ziel, H. (1971»Man,Science and Technology: An Educational Program. Edmonton, Alberta: I.D. B.Press.
- [7]. Sawag, N, Sterry L.(2002)»A Conceptual Framework for Technology Education: A Historical Perspective». Journal of Technology Studies, 28(2),98-100 2002. [۸]. محمد زاده، فاطمه (۱۳۸۵) «معلمان فیلسوف، فلسفه تربیتی پستالوزی، مجله رشد معلم، شماره ۲۰۷، ص۳.

[٩]. سیف، علی اکبر (۱۳۷۲)» روانشناسی پرورشی، انتشارات آگاه، چاپ

بدافزارها و چالش های ایمنی در محیط سایبر

نوید علیزاده ۱٬۰ زهرا انصاری

چکیده

هم اکنون، عموم رشته ها به نوعی رایانه و اینترنت را بکار می برند، اما به امکانات و خطرهای آن آگاهی ندارند. در فضای سایبری کاربرانی هستند که طعمه نفوذگران هستند؛ نه تنها برای بکارگیری داده هایشان، بلکه برای استفاده از رایانه برای نفوذ و تاختن به مراکز مهم تر. کاربران می باید این را بدانند که کرم ها، کوکی ها و ویروس های اینترنتی به تندی در حال پخش شدن در شبکه هستند و از بین میلیون ها کاربر، دست کم یک کاربر می تواند آنها را به هدف خود برساند. بنابراین، پیشنهاد می شود پیش از بکارگیری رایانه و اینترنت با امکانات آن آشنا شوید. در این نوشتار، کوشش بر شناساندن انواع نا امنی ها در محیط سایبر و نحوه تشخیص نگهبانی های مناسب توسط کاربر و همچنین بررسی راهکار های بالا بردن نرم افزار های نگهبان پرداخته می شود.

واژگان کلیدی: نرم افزار ویران گر، ویروس الکترونیکی، کرم اینترنتی، اسب تروا، نرم افزار پاداش، نرم افزار ردیابی، درب های ینهان، ثبت کننده های کلید، امنیت داده ها، آنتی ویروس.

چاره جویی های ایمنی

هم اکنون، بسیاری از کاربران بر این گمانند که به علت ناشناس بودن در شبکه های رایانه ای به ویژه اینترنت، کسی نیت آزار رساندن و دسترسی به داده های ایشان را ندارد. گمان می شود که «کسی به من کاری نخواهد داشت، چون من با ایشان کاری ندارم»، یا این که «کسی چه می داند پشت این رایانه من نشسته ام که بخواهد به داده های من دسترسی داشته باشد؟»، یا مهم تر از همه این که «مگر داده های من به چه درد افراد دیگر می خورد». این طرز فکر نادرست منجر به عدم رعایت چاره جویی های ایمنی می شود[۲و ۱].

در نخستین روزهای بکارگیری رایانه در سامانه های به اشتراک گذاشته شده، تنها نام کاربری برای شناسایی افراد بکارگرفته می شد و نیازی به وارد کردن رمز عبور نبود. ولی، پس از آن که کاربران بدخواه، آغاز به بکارگیری ناروا در این سامانه کردند، رمزهای عبور نیز به سامانه ها

افزوده شد. هم اکنون، کاربران بیش از هر زمان دیگری باید به ایمنی بیشتر شبکه رایانه خود به پردازند. در ادامه، به سه مورد از دلایل اهمیت ایمنی اشاره می شود:

- امروزه، سرمایه گذاری روی تجهیزات سخت افزاری و نرم افزاری بسیار ارزش مندتر شده است. از این رو، اگر در یک یورش امنیتی، اجزای سخت افزاری و نرم افزاری آسیب ببینند، به جهت هزینه بسیار بالای نصب و تعمیر تجهیزات و نیز افزایش زمان از کار افتادگی، بهره وری سامانه کاهش خواهد یافت.
- داده های سازمانی و فردی مانند فهرست مشتریان و ارتباط ها با آنها، طرح های مالی، داده های حسابداری و دارایی، رساله یا پایان نامه و غیره، همواره با ارزش بوده اند.
- تهدیدهای نفوذگران اینترنتی از قبیل بدست آوردن رمز کارت بانکی یا حتی تفریح با کاربران بی احتیاط و تلاش در به دام انداختن آنها افزایش

*. عهده دار مکاتبات، تلفن/ دورنگار:۲۹۸۲۱ (۹۸۲۱) پست الکترونیکی: Nalizadeh@ut.ac.ir ۱. مرکز تحقیقات بیوشیمی و بیوفیزیک دانشگاه تهران.

1. Recovery

بدافزارها و چالش های ایمنی در محیط سایبر

حساب مي أورند.

نرم افزار جایزه ً

اسب تروا ۵

يافته است.[٥ و٣].

این روزها، رایانه ها در فضای مجازی ٔ با انواع گوناگونی از بدافزارها و ویروس ها آلوده می شوند. به همین دلیل شرکت های آنتی ویروس پیوسته، در حال بالا بردن نرم افزارهای خود برای مبارزه با این تهدیدها مي باشند. اما بااين حال، به دلايل زير سامانه ها همچنان در معرض خطر هستند.[٧و٦]:

- سهل انگاري
- اولویت نداشتن صرف هزینه برای مسائل ایمنی
 - پایین بودن سطح کیفی سخت افزار
 - خلاقیت نفوذگران در ایجاد طعمه
 - پايين بودن سطح آگاهي کاربر
 - نگاه ساده انگارانه و غیرواقعی کاربر

آشنایی با برخی از مهمترین ناامنی ها و مزاحمت هاى الكترونيكي نرم افزار ویران گر´

نام دیگر نرم افزارهای ویران گر ، بدافزار است. این نرم افزارها بیشتر برای آسیب رساندن یا ویرانی سامانه ها طراحی می شوند.

نخستین ویروس رایانه ای در سال ۱۸۹۱ شناسایی شد، مفهوم کرم رایانه در سال ۱۹۷۵ معرفی شد و اوایل Science Fictionای در کتاب دهه ۱۹۸۰، اولین فعالیت های محسوس خود را آغاز کرد. جالب است بدانید که این کرم ها نخستین بار برای این طراحی شده بودند که عملکرد مثبت و مفیدی داشته باشند. پیدایش اسب های تروای رایانه ای هم به نخستین روزهای ایجاد سامانه های اشتراک زمانی (دهه ۱۹٦۰) باز می گردد. با وجود تاریخ و سابقه طولانی این نرم افزارها، به تازگی تأثیرهای ویران گری آنها برای کاربران عادی پررنگ بوده است. [۹ه].

برنامه ای است که به انتهای برنامه دیگری متصل و یا وارد بدنه آن می شود. وقتی این برنامه به اجرا در می آید، ویروس همراه آن اجرا شده، نسخه های خود را وارد فایل یا قسمت های دیگری از حافظه می کند و به این ترتیب نسخه های بیشتری منتشر می شوند. با هر بار اجرای یکی از فایل ها یا برنامه های آلوده، این روند تکرار می شود. البته، ویروس ممكن است افزون بر اين موارد، كارهاي ديگري نيز انجام دهد.

كرم ها از اين جهت كه نسخه اي از خود را منتشر مي كنند، مشابه ويروس ها هستند، اما براي اينكار بــه برنامه ميزبان نياز دارند. همانند ويروس ها، يک كرم ممكن است تنها نسخه هايي از خود را در جاهاي متفاوت تكرار كند و يا اينكه افزون بر أن عمليات ديگري نيز انجام دهد. کرم تنها زمانی کار می کند که سامانه توانایی پذیرفتن منابع خارجی را

درب های مخفی^۹

معمولاً برای دسترسی به یک سیستم کامپیوتری نیاز به وارد کردن نام کاربری و رمز عبور دارید. اگرچه این سطح از امنیت، گاهی اوقات برای

داشته باشد و از راه آن منابع بتواند به اجرای آن برنامه بپردازد. برخی از

فروشندگان ابزارهای شناسایی بدافزارها، کرم ها را نیز نوعی ویروس به

نام این نوع نرم افزار از افسانه جنگ شهر تروا در یونان گرفته شده است.

در آن افسانه، یونانی ها یک اسب چوبی بزرگ را از دروازه شهر به داخل

می فرستند و هنگامی که اسب وارد شهر می شود، شمار زیادی سرباز

یونانی از آن خارج می شوند و شهر را در خواب و غفلت ساکنین به

تصرف خود در می آورند. از آن زمان به بعد "اسب تروا" به عنوان سمبلی

از ظاهری عادی و باطنی خطرناک و آسیب رسان شناخته می شود. در

مفاهیم رایانه ای ، اسب تروا می تواند خرابی های زیادی به بار آورد و یا

اعمالی غیر از آنچه کاربر انتظار دارد، انجام دهد. این اصطلاح به تازگی به

برنامه های ویران گری گفته می شود که بیشتر بدون آگاهی و اجازه کاربر

نرم افزارهای جایزه حاوی بسته های دیگر نرم افزاری است که گاهی

همراه با نرم افزار اصلی نصب می شود. به عنوان مثال، اگر یک

مرورگر^۷ وب نصب نمایید، ممکن است در کنار آن برنامه هایی نظیر

و یا چند نوار ابزار نیز وجودFlash Player، Acrobat Reader

داشته باشد که مسلما باعث افزایش کارایی نرم افزار اصلی می شود.

در اکثر موارد برای نصب نرم افزارهای جایزه از شما سؤال می شود.

نرم افزارهای جایزه که اکثرا حامی مالی نرم افزار اصلی هستند و این

همراهي بُعد تبليغاتي براي آنها دارد، جاسوسانه عمل مي كنند و اكثرا

در صورت اتصال سیستم به اینترنت، با سایت اصلی خود ارتباط

این دسته از برنامه ها، پایگاه هایی را که مشاهده می کنید رصد می کنند

و مي توانند علاوه بر آنچه كه شما در حالت معمول مي بينيد، صفحات

دیگری را نیز به نمایش در آورند. همچنین می توانند محتویات یک پایگاه

وب را با تبلیغات خود جایگزین نمایند و اطلاعاتی را در مورد کامپیوتر

شما و تعاملاتی که با تولید کننده آن داشتید، برای پدیدآورنده خود

بفرستد. این نرم افزارها در بسیاری از موارد دارای کنترل کامل بر روی مرورگر شما هستند، آنچه را انجام می دهید، تحت نظر دارند و این آمار

برقوار کرده، هر آماری از سیستم را ارسال می دارند.

را به مقصد مورد نظر خود گزارش می دهند[۱۱و ۱۰].

نرم افزار ردیابی و اعمال تغییر در شبکه ^

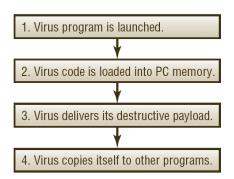
وارد سامانه می شوند و به جمع آوری و ارسال داده ها می پردازند.

- 1. Cyber Space
- 2. Malicious Software
- 3. Malware
- 4. Internet Worm
- 5. Trojan

- 6.Bonus Software
- 7. Web Browser
- 8. Web Tracking / Modification Software
- 9. Backdoors

نشریه نشاء علم، سال دوم ،شماره اول، دی ماه ۹۰

بدافزارها و چالش های ایمنی در محیط سایبر


سیستم هایی که از لحاظ فیزیکی ایمن هستند و تنها اشخاص خاصی می توانند از پشت صفحه کلید وارد آنها شوند وجود ندارد. نرم افزار درب مخفی با بی اثر کردن کلیه حفاظت های ایمنی به کاربر راه دور (نفوذگر) اجازه دسترسی به کامپیوتر شما را می دهد. این نرم افزار حتی ممکن است حفاظت های ایمنی خود را کار بگذارد تا تنها پدید آورنده آن بتواند از سیستم استفاده نماید.

ثبت کننده های کلیدا

ثبت کننده کلید، تمامی کلیدهای فشرده شده صفحه کلید را ثبت و در یک فایل ذخیره می کنند، این فایل می تواند در آینده از طریق دسترسی درب مخفی مورد استفاده قرار گیرد و یا از طریق پست الکترونیکی یا وب برای مقصد مورد نظر ارسال شود. شایان ذکر است که ثبت کننده کلید تمامی آنچه واقعا ماشین نویسی می کنید را نظاره می کند و نه آنچه که از طریق شبکه ارسال می شود. بنابراین حتی اگر شماره کارت اعتباری را روی صفحه وب ایمن وارد نمایید (به این معنی که در زمان انتقال اطلاعات از رمزنگاری استفاده شود)، این برنامه دقیقاً آنچه را که ماشین نویسی می کنید، پیش از رمز شدن و بدون ارتباط با سیستم رمز نگاری ثبت می نماید[۱۲و۹].

ويروس نويسان

فناوری اولیه ویروس های کامپیوتری بر اساس یک روش بسیار ساده برنامه نویسی بود که در آن برنامه ای تولید می شد (شکل ۱) که می توانست از خودش یک یا چند نسخه دیگر به وجود بیاورد (یا به اصطلاح رونویسی کند) و در دایر کتوری (یا مکان) دیگری قرار دهد که در آن مکان جدید دوباره به اجرا در آمده و این فرایند را تکرار کند. مهندسین کامپیوتر در آن زمان بر آن بودند که از این روش برای آزمایش سخت افزار مین فریم ها ۱۳۲۱ استفاده کنند که آیا مکان یاب حافظه های آنها عملکرد صحیحی دارند یا خیر.

شکل ۱: فناوری اولیه ویروس های کامپیوتسری: ۱. ویروس به کامپیوتر مقصد میرسد. ۲. در حافظه کامپیوتر اجرا می شود. ۲. ویروس تاثیر مخرب خود را می گذارد. ٤. ویروس نسخه ای از خود را در برنامه ای دیگر کپی می نماید.

امروزه بسیاری از ویروس هایی که اکنون منتشر شده اند،در واقع توسط کیت های ساخت ویروس و توسط افرادی ایجاد می شوند که شاید هیچ پیشینه ای در رایانه نداشته باشند.افرادی که از کادهای دیگران استفاده می کنند و سعی می کنند طوری وانمود نمایند که با برنامه نویسی آشنایی دارند.[۱۶ و ۱۵].

تعريفايمني سيستم

رهایمی از هر گونه خطر و هلاکت احتمالی، برقراری ایمنی و رهایی از ترس و نگرانی را ایمنی سیستم می گویند.

تعريف ايمنى اطلاعات

مفهومی است که به اقدامات پیشگیرانه ای اطلاق می شود که ما را قادر می سازد از اطلاعات خود در برابر حمالات خارجی و بهره برداری های غیر مجاز محافظت کنیم. به عبارت بهتر ایمنی اطلاعات، فرآیندی است جهت حفظ اطلاعات از دسترسی غیر مجاز، افشا شدن، خرابکاری، تغییر و یا از بین رفتن آنها[۱۷].

نحوه ارزيابي آنتي ويروس ها

بیش از یک دهه است که شرکت های بزرگ آنتی ویروس نقشه های ويروس را نشان مي دهندو به ما در ارتباط با آلودگي كامپيوتر هشدار مي دهند و امروز آنتي ويروس جزء اصلي رايانه هاي شـخصي تبديل شده است برخی شرکت های آنتی ویروس به دلیل اثری که در پایین آوردن سرعت سیستم ها و بالا بردن زمان کاری دارند، شهرت پیدا کرده اند. هرکسی که با این شرکت های بزرگ کار کرده است یک نکته را با اطمینان می داند و به آن عمل می کند: اجتناب از خریدن محصولات آنتی ویروس آنها! در حال حاضر شرایط تغییر کرده است. بررسی های اخیر نشان می دهد که بیش از ۷۰٪ کاربران جهان بیشتر به برنامه های آنتی ویروس رایگان علاقمند هســتند تا برنامه های پولی. ولی به هر صورت تصور کنید که روزی شرکت تولید کننده سیستم عامل مورد استفاده شما پس از یک سال از ورود شما به سیستم عامل جلوگیری کند و شما را مجبور به خرید نسخه به روز رسانی آنتی ویروس نصب شــده شــما نماید. پس به هر صورت چیزی که مهم اســت تشخیص برتری یک آنتی ویروس بر دیگران است نه پولی و یا مجانی بودن آن. اگر بخش پاداش ها در باره آنتی ویروس های شناخته شده، دیده شود (نشانی اینترنتی پائین)، نشان ها و پاداش های داده شده، گویای اعتبار و استقلال آنهاست. در تأیید اعتبار و استقلال این سازمان ها تنها می توان گفت که کلیه شرکت های تولید کننده آنتی ویروس برای دریافت این نشان ها، رقابت مي كنند و دريافت نشان ها را افتخاري براي شركت خود می دانند. هر ساله، با بررسی های گوناگون به برترین شرکت ها نشان هایی داده می شود.پیشنهاد می شود، کاربران پیش از گزینش یک آنتی ویروس برای سامانه مورد نظر خود هم به سنجش ها و هم به رتبه

- 1. Key loggers
- 2. Main-Frame Computers

بندی های این شرکت ها توجه داشته باشند. آدرس زیر نمونه ای از یک رتبه بندی برای سال ۲۰۱۱ می باشد:

http://www.av-comparatives.org/en/compar - tivesreviews/detection-test

سنجش های مهم یک آنتی ویروس که دو سازمان جهانی AV-Co سنجش های مهم یک آنتی ویروس که دو سازمان جهانی قرار می دهند، به ترتیب اهمیت عبارتند از:

١. قدرت شناسايي بالا

 هوش مصنوعی مطمئن در راستای شناسایی ویروس های ناشناخته حدید

۳. تاثیر کم بر میزان کارایی و بهره وری سامانه مورد کاربری
 ٤. سرعت جستجوی ویروس ها

میرزان توانایی آنتی ویروس در تعمیر فایل های آلوده شده به ویروس (این پارامتر جزء معیارهای شرکت AV-Test است.)
 از دید غیرفنی، مسائلی چون نداشتن در پشتی (ارسال اطلاعات سیستم کاربر برای شرکت تولید کننده آنتی ویروس) و همچنین تحریم نبودن نیز مطرح می شود[۲۰۸۱].

نقش شرکت های تولید کننده آنتی ویروس در تولیدویروس

با توجه به اینکه ویروس ها و بدافزارهای فراوانی برای توجیه نیاز به برنامه های آنتی ویروس وجود دارند، شکی نیست ایجاد ویروس به افزایش سود و حضور فعال شرکت های آنتی ویروس در بورس، کمک می کند. اگر شرکت های آنتی ویروس واقعاً به این مطلب اعتقاد داشتند که انتشار ویروس ها به افزایش سود و فروش هایشان کمک می کند احتمالا کمر به ساخت ویروس ها و بدافزارهای بیشتر می بستند و حتی برای انتشار آن برای سیستم عامل های دیگر سخت تلاش می کردند. هرچند امکان اینکه فردی وابسته به یک شرکت آنتی ویروس، چنین کار غیر اخلاقی انجام دهد، دور از ذهن نیست، ولی برای پاسخ به این سوال موارد زیر نیز قابل تامل است:

۱. شرکت های آنتی ویروس از خطرهای موجود در برخورد با ویروس های رایانه ای آگاهی دارند. این شرکت ها فرصتی برای استخدام افرادی که ویروس ها را ایجاد کرده اند، نخواهند داشت. زیرا با توجه به اینکه ایجاد ویروس های رایانه ای برای هرکسی که با رایانه و برنامه نویسی آشایی دارد،کار چندان دشواری نیست و نیز با توجه به خیل عظیم ویروس های تولید شده که در هر ثانیه وارد شبکه های جهانی می شود، آنها دیگر فرصتی برای به روز رسانی در کشف و پاک سازی تمامی ویروس ها و سایر تهدیدات رایانه ای نخواهند داشت.

آدیک ویروس برای اینکه آزمون خود را پس دهد، نخست باید در یک شبکه بدون اینکه بد گمانی آنتی ویروس های آن را برانگیخته کند، گسترش یابد؛ بنابراین ،در چنین شرایطی یک شرکت آنتی ویروس نمی تواند خود را از آن دور بدارد. بدین معنی که یک ویروس باید پس از آماده سازی در بستری آزمایش شود. برای یک شرکت آنتی ویروس، ایجاد چنین بستر مجازی هزینه بر است؛ زیرا نمی تواند در شبکه خود

شرکت آنرا در مهک آزمون بگذارد. در آن صورت ویروس نخست فرآورده های خود آن شرکت را آلوده خواهد کرد که این امر منجر به نارضایتی مشتری می شود.

۲. بیشتر ویروس ها اثر انگشت نویسنده را روی خود دارند. نویسنده ها سهوی یا عمدی روی کدی که می نویسند، اثری از خود به جای می گذارند. کدی که ویروسی را تشکیل می دهد، پس از انتشار ویروس، توسط ده ها کارشناس امنیتی بازنگری می شود. تحلیل آن کد می تواند منجر به شناسایی ریشه ویروس، یعنی همان شرکت آنتی ویروس شود. اگر یک شرکت آنتی ویروس مسئول ایجاد ویروسی شناخته شود، این نه تنها برای وجهه آن شرکت بد خواهد بود، بلکه باعث دادگاهی شدن آن شرکت نیز می شود. [۲۲و ۱۲و ۱۷و).

نتيجهگيري

به نظر می رسد دنیای سایبر دوره جدیدی در تاریخ زندگی بشر خلق کرده است و ارائه گسترده خدمات الکترونیک خواه ناخواه مردم را به سمت این محیط به ظاهر امن اما پرخطر سوق می دهد و این گسترش و بسامد بالا حساسیت پرداخت به ایمنی شبکه را که توسط غیر بومی ها انجام می شود افزون می کند؛ درست مثل این که نگهبانی و پاسداری از مردم یک کشور توسط ملل دیگر انجام شود! درست است که ما خالق این فضا نبوده ایم اما جایگاه امروز بشر به حکم سنت و توارث بر پایه دانش مشترک بنا شده و در دنیای امروز این به اشتراک گذاری لحظه ای متوقف نمی شود؛ ما هم باید در این راه سهیم باشیم.

اصولا فناوری ها با هدف مرتفع سازی نیازهای بشر زاده می شوند اما به دنبال افزوده شدن فناوری وارداتی به جرگه ابزار های مورد استفاده جامعه، طبعاً نیازها و کاربردهای آن نیز وارداتی می شود. در آن حال گاهی دیده میشود که ناچیز ترین مولفه یعنی نام آن فن مشکل ساز شده و تا مدتی دعوا بر سر واژه های منصوب فراگیر آن می شود. جلوگیری از ورود فناوری هم شدنی به نظر نمی رسد.

تولیدکنندگان امروزی افزون بر نیازهای جامعه خود، جوامع دیگر را هم مد نظر دارند هرچند نیازها و ابزارهای بومی ما را نمی شناسسند یا نمی خواهند آن طور که باید بشناسسند. بهتر است بگوییم آنها در قبال این شناخت مسئولیتی ندارند، این ما هستیم که باید به سرعت در جهت بومی سازی و فراتر از آن مشارکت در ایجاد فناوری گام برداریم. نمونه ابتدایی این بومی سازی تولید نرم افزار فارسی است که آن هم برای اتصال به مرکز و دریافت قلم های الکترونیکی مورد نیاز سامانه همان دیوار آتش و محافظ سامانه عامل را غیر فعال کند. این در حالی است که آنتی ویروس رایانه شما و شرکت سازنده آن از این مورد بی خبر است!

در این باره، فرایند بومی سازی کاری است پایه ای که نیازمند پشتکار و همت کارگزاران و بانیان آن می باشد. باید با سرمایه گذاری در این راه و تلاش کارشناسان و نخبگان کشور، روش های ایمنی سامانه تعریف و تلاوین شود. این رویه در بیشتر کشورها در حال اجراست. بنابراین، زمانی که سخن از ایمنی سامانه به میان می آید، با آزمون و خطا راه به جایی نمی بریم و با واردات بی رویه و آسان انگاری، همچنان دست ما کوتاه خواهد ماند. اما، با سرمایه گذاری هدفمند و برنامه ریزی درست و ریزبین، می توان به گسترش سایبر امن در کشور، همت گماشت.

منابع و مآخذ

- work for Acceptable Usage Policy Monitoring and Enforcement. Journal of Network & Computer Applications, Vol.30, No.2, P.P 445–465.
- [13] Alizadeh, N. (2008). From Super Computers to Pen Computers. Rahyaft, No.41, pp. 89 92.
- [14] Ettredge, M., Richardson, V.J. (2003). Information Transfer among Internet Firms: the Case of Hacker Attacks. Journal of Information Systems, Vol.17, No.2, P.P 71-82.
- [15] Siau, K., Nah, F. F., & Teng. (2002). Acceptable Internet Use Policy, Communications of the ACM, Vol.45, No.1, P.P 75–79.
- [16] Whitman. (2004). In Defense of the Realm: Understanding Threats to Information Security. International Journal of Information Management, Vol.24, No.1, P.P 43–57.
- [17] Rees, J., Bandyopadhyay, S., & Spafford, E. H. (2003). PFIRES: A Policy Framework for Information Security. Communications of the ACM, Vol.46, No.7, P.P 101–106.
- [18] Doherty, N. F., Anastasakis, L., & Fulford, H. (2009). The Information Security Policy Unpacked: A Critical Study of the Content of University Policies. International Journal of Information Management, Vol.29, No.6, P.P 449–457.
- [19] Doherty, N. F., & Fulford, H. (2006). Aligning the Information Security Policy with the Strategic Information Systems Plan. Computers & Security, Vol.25, No.1, P.P 55–63.
- [20] Herath, H. M. P. S., & Wijayanayake, W. M. J. I. (2009). Computer Misuse in the Workplace. Journal of Business Continuity & Emergency Planning, Vol.3, No.3, P.P 259–270.
- [21] Albrechtsen, E. (2007). A Qqualitative Study of Users' View on Information Security.
- Computers & Security, Vol.26, No.4, P.P 276–289.
- [22] Dhillon, G.,&Torkzadeh, G. (2006). Value-Focused Assessment of Information System Security in Organizations. Information Systems Journal, Vol.16, No.3, P.P 293–314.

- [1] Chen, T.M (2003). Trends in Viruses and Worms. The Internet Protocol Journal, Vol.6, No.3 P.P 23-33.
- [2] Cluley G. (2000). Trends in Virus Writing and Anti-Virus Technology. Available from: http://www.securitywatch.com/TRE/092100.html.
- [3] Anandarajan, M. (2002). Internet Abuse in the Workplace. Communications of the ACM, Vol.45, No.1, P.P 53–54.
- [4] Dhillon, G., & Backhouse, J. (2000). Information System Security Management in the New Millennium. Communications of the ACM, Vol.43, No.7, P.P 125–128.
- [5] Holmes, J. (2003). Formulating an Effective Computer Use Policy. Information Strategy: The Executive's Journal, Vol.20, No.1, P.P 26–33.
- [6] Doherty, N. F., & Fulford, H. (2005). Do Information Security Policies Reduce the Incidence of Security Breaches: An Exploratory Analysis. Information Resources Management Journal, Vol.18, No.4, P.P 21–38.
- [7] Leach, J. (2003). Improving User Security Behavior. Computers & Security, Vol.22, No.8, P.P 685 692.
- [8] Huang, D. L., Rau, P-L., Rau, P., & Salvendy, G. (2008). Perception of Information Security. Behaviour & Information Technology, November, 1–12.
- [9] Ng, B.Y., Kankanhalli, A., & Xu, Y. (2009). Studying Users' Computer Security bBehavior: A Health Belief Perspective. Decision Support Systems, Vol.46 No.4, P.P 815–825.
- [10] Information Management & Computer Security, Vol.5, No.5, P.P 182–190.
- [11] Patel, S. C., Graham, J. H., & Ralston, P. A. (2008). Qualitatively Assessing the Vulnerability of Critical Information Systems: A New Method for Evaluating Security Eenhancements. International Journal of Information Management, Vol.28, No.6. P.P 483–491.
- [12] Stephen, B., & Petropoulakis, L. (2007). The Design and Iimplementation of an Agent-Based Frame-

افسانهٔ پادشاه و ریاضی دان مولف: دکتر مهدی بهزاد نشر دیبا

این کتاب سه مؤلفهٔ مهم و اساسی را دربردارد. هنر نمایش، فرهنگ سنتی و بومی ، علم ریاضی. تنیدن علم ریاضی در تار و پود یک اثر ادبی گام مهمی در راستای عمومی کردن علم به حساب می آید . خواننده این نمایشنامه قدم به قدم پا برجای نویسنده می گذارد و با داشتن معلومات در حد پیش دبیرستانی، موفق می شود که درک متناسبی از طرح و حل مسئله بیابد. مبحث مجموعههای کمینه پوچ ساز به ازای هر عدد طبیعی به گونهای لطیف و با منطقی در صفحههای پیاپی و در لابلای گفتگوهای بین بحرالعلوم و شاگردان مطرح می شود و به شکلی کاملا بدیهی از سوی خواننده پذیرفته می شود. در انتهای نمایشنامه اهمیت ترویج ریاضیات و وجود ریاضیدانان بر همگان مسجل می گردد.

در این کتاب استاد دکتر مهدی بهزاد در ترویج علم ریاضیات و همه فهم کردن آن در میان جوانان، اثری بدیع عرضه کرده است. باشد که به زودی اصول فیزیک و ترمودنیامیک و یا حتی جادوی پیوندهای مولکولها را در ترکیب شیمیایی و آلی را بتوانیم در لابهلای نمایشنامههای شیرین دیگری بیابیم. چنین آثار علمی – هنری می توانند مشوق و به وجود آورنده علاقه های بیشتر در بین جوانان کشور ما به ریاضیات و در راه توسعه و ترقی دانش های بنیادی در ایران باشد.

زمین گرم ارمغان سده بیست و یکم مولف: دکتر یوسف ثبوتی انتشارات: موسسه جغرافیایی و کارتو گرافی چاپ اول

انسان دو سده گذشته بدون توجه به محیط زیست به توسعه نا اندیشیده صنعتی و اقتصادی پرداخته و سلامت کره زمین را به مخاطره انداخته است. برای جبران مافات لازم است در فعالیت های اقتصادی و صنعتی اش بر مبنای توسعه پایدار تجدید نظر کند.

گرمایش کره زمین و تغییر اقلیم مشکلات فراوانی در پی خواهد داشت. گرمایش زمین واکنش های جدید شیمیایی و بیولوژیکی و ترکیبات غیر طبیعی به وجود خواهد آورد و ممکن است موجب بیماری های نوظهور برای انسان، حیوان و گیاه شود. بنابراین گرمایش جهانی کره زمین و تغییر اقلیم موضوع مهمی است که همه کشورها وظیفه دارند برای کاهش آثار ناخواسته و سازگاری با محیط زیست سرمایه گذاری کنند، برنامه ریزی داشته باشند و به موقع اقدام لازم را بعمل آورند.

کتاب گران سنگ «زمین گرم، ارمغان سده بیست و یکم»، نوشته استاد دکتر یوسف ثبوتی، حاصل مطالعات وسیع آثار و کتب و مقالات منتشره شده در سطح بین المللی است.

کتاب، راهنمای مفید و بسیار خوبی برای دانش پژوهان، برنامه ریزان و مسئولان کشوراست که به معضل جهان گرم توجه نمایند و در تصمیم گیری های ملی و تعاملات بین المللی توصیه های آن را بکار بندند.

• References:

- Internet References:

Internet references: should be appear at the end of relevant text in parentheses () or at the end of paper (before references) under the title of " websites visited in this paper.

References should be encoded numerically within [] in the text.

- References should be listed on accordance of the following approach.

Journal:

Last Name, First name initial.(Date of pub). Title, Name of Journal, Volume, Number, P.

[1] Narayana, N. R. (2006). "Privatization Policies and Post Privatization Control Devices in India's Higher Education", Journal of Studies in International Education, Vol.10, No.1. PP. 70 – 46.

Book:

Last Name, First Name Initial. (Date of pub). Title, Translator, Pub Row, Company, Venue of Pub. P.

[1] Falconer, K.(2003). National Assessment of Educational Progress, Translated by Saeedi, Majid, Second Edition, Amir Kabir Press, Tehran- Iran, PP.41-40.

Footnotes:

The footnotes should contain the English expressions below the corresponding page. Papers should be sent to Editor - in- Chief via: sc@fast-iran.com

How to Write Papers for Science Cultivation Journal

The Structure of the paper should uphold the following principles:

• The title (maximum 10 words).

• Author's name:

First author, affiliation or faculty, tel, fax, email, second author, affiliation or faculty, tel, fax, email... Corresponding author should be mark with asterisk. In case that authors affiliations are the same, the affiliation of corresponding author will be considered.

• Abstract:

Abstract in Persian, 200 words and in English, 180 words in one paragraph followed with at least 6 keywords in both Persian and English languages.

• Introduction:

Introduction should clarify the importance of subject, research background and conclusions.

Body of Paper:

Paper should be cohesive with logical integration.

Conclusion and Suggestions:

This part should include the result of findings and applicable suggestions for science, research and technology policy makers.

• Acknowledgement (Optional).

Malwares and Safety Guidelines in Cyberspace

N. Alizadeh*¹ Z. Ansari ¹

Nowadays, computer and internet services are utilized in all fields by different users. However, they are not familiar with facilities as well as with dangers that they may be posed. There are users in cyberspace that may be victims of hackers that are after not only their information but to use their computers to attack other important centers.

The users must know that internet worms, cookies, and viruses are rapidly expanding throughout the network, and from among millions of users, at least one may be victimized and help them reach their goals. Thus, it is recommended that before any use of computer, it is necessary that users become familiar with possibilities and dangers of technology they are using.

In this paper, we intend to identify different types of insecurities/malwares in cyberspace and describe ways for recognizing a proper security guard by the users. This paper also addresses the methods for upgrading security software.

Keywords: Malwares, Safety in Cyberspace, Internet Worms, Internet Viruses.

^{*.} Corresponding Author, Tel fax: 61113389 email: nalizadeh@ut.ac.ir.

^{1.} Institute of Biochemistry and Biophysics (IBB), University of Tehran, Iran.

Theoretical and Logical Bases of Technology Education

A. Khosravi¹, K. Poshaneh ¹
A. Kiani Bakhtiari*²

Technology Education and its promotion in public education is considered as one of important factors towards development of a country. During recent decades a field of study referred to as technology education, offered at different academic levels including four year college, MA and doctorate levels, has been initiated in developed countries within the context of an interdisciplinary education. As a Scientific and research discipline Technology Education promotes the technological literacy of learners to cope with their needs by manipulating the materials through experimental techniques and innovative approaches. According to psychological researches, technology education as an intelligent discipline organizes the mind of learners through problem solving and creativity promotion skills to impact their surrounding environments.

In terms of educational philosophy, technology education beyond its role in development of certain skills is an approach to improve the attitude of learners regarding the reciprocal affects of technology and sociocultural affairs.

Technology training as a course offering along with general education is initiated from the preschool and continues to higher education by special technology resources and professional teachers. With the help of technology education, methods of problem solving, innovative approaches and all useful and effective habits and life skills are taught.

Technology training whether as a separate discipline or as an integrated with general public education, is enriched with scientific, philosophical and psychological bases. In this paper while describing some of these bases, we try to draw the attention of technology policy makers, curriculum developers and educationalists towards technological training.

Keywords: Technology, Technology Education, History of Tech-Ed, Tech-Ed Philosophical Bases, Tech-Ed Psychological Bases,

^{*.} Corresponding Author, MA, Educational Sciences. Tel / Fax: (+9821)88783109, Email: Kiani@ fast-iran.ir

^{1.} Assistant Prof. Islamic Azad University, Tehran Central Branch.

^{2.} Foundation or the Advancement of Science and Technology in Iran.

Networks and Technology Clusters in Iran

H. Moradipour*1
M. Dastani1

Technological clusters refer to an integrated entities composed of professionals with expertise knowledge, venture capital, companies with superior know-how and technologies that operate within an appropriate physical organizational set up. They are often located in specific geographical areas within the proximity of universities, science and technology parks and research centers where they are administered with a market oriented management that produce products and provide scientific services. Nowadays, these clusters are considered as a model for science-based economic development and as such economists consider clusters and networks as playing a key role in speedy utilization of innovation where they provide a competitive edge in worldwide competition. In the definition of clusters, factors such as geographic concentration and coherence or similarity of activity areas, specialty and division of functions that lead to inter-group working relationship as well as internal dependencies of technological companies, are emphasized.

An important point in connection with economic development of societies that have been able to promote conditions for establishing clusters, is the fact that these developments and advantages gained, are consequence of setting up of such clusters. The most significant advantages include: increase in employment opportunities, knowledge exchanges and as a result, promotion of scientific know-how among companies, upgrade of level of specialty knowledge, strengthening of social communication. The underlying principle is that regional clusters would have the necessary capabilities for promoting successful innovations and providing competitive edges if strong social networks—for business and work are facilitated. For this reason, many countries in their policy planning, have concentrated on the promotion and encouragement of innovations and formation of technological clusters suitable to different regions, in order to generate competition and economic development.

Keywords: Clusters, Technological Clusters, Network, World Wise Knowledge Based Economy, Competitive Edge, Science and Technology Park.

^{*.} Corresponding Author, Tel: Email: h moradipour@locallan.msrt.ir

^{1.} Center for Technology Planning and Policy Making, Ministry of Science, Research and Technology.

Early Realization of Scientific Goals in Iran Twenty Years Plan

M. Bayat ¹,² , S.Salehzadeh¹ M.A. Zolfigol ^{*1}

In this paper, performance of Iranian researchers as shown by the latest information gathered from the scientific data base published by Scopus during the recent years, is examined and compared with those of several neighboring countries in particular with Turkey and some of the advanced countries. The results of this investigation indicates that in 2011, Iran with 34055 scientific documents ranked eighteen world wise while Turkey with 31,150 scientific documents ranked nineteen behind Iran. In 2011, Iran held the first rank in the region in production of scientific documents in accordance with Scopus data base.

In addition, when we consider total number of published scientific documents world wise in 2011 in which the ratio of population of each country to the total world population is also taken into consideration, Iran with a ratio of 1 /42 as compared with 1/29 for Turkey, ranked higher and as such is considered to be in a superior scientific position in the region. This position has continued to be maintained in 2012 and has even reached a higher standing.

Keywords: Realization of scientific goals as set within the projected twenty years plan of country progression, Scopus scientific data base, scientific documents.

^{*.} Corresponding Author, Prof. Tel: (+98811)8282807, Fax: (+98811)8257407, Email:Zolfi@basu.ac.ir 1.Chemistry Faculty, Bu-Ali Sina University, Hamedan-Iran.

^{2.} Chemistry Department, Science Faculty, Malayer University, Malayer - Iran

Science & Research

Ethical Instruction for Authors of Research Papers

M. Naderi, R. Rahimi Vaghar Ali A. Moosavi-Movahedi *1

Internet has made it extremely easy to have full access to scientific articles and research results all over the world. Unfortunately, aside its vast advantages, the internet has made scientific plagiarism much easier for the jobbers and this has posed a serious problem these days. In this article, the main reasons for this problem is discussed in which some solution approaches have also been proposed. Moreover, we have given brief guidelines on how to write a research paper or report with respect to ethical issue and considerations.

Keywords: Plagiarism, Scientific Articles, Self-Plagiarism, Unintentional Plagiarism, Double-Blind Peer Review, Duplichecker.

1. Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran,

^{*.} Corresponding Author, Professor. Tel:(+9821) 61113381, Fax:(+9821)66404680. Email: moosavi@ibb.ut.ac.ir

Nobel Laureates in Chemistry (1901-2011)

F. Nouroznejad M. Shabani Domola *1

In 1986 Alfred Nobel founded Nobel Prize with an objective to encourage and motivate scientists and educated people to play a greater role in the improvement of life of human being. The actual award of the prize which started in 1901, is now made every year to top level scientists in five scientific branches of physics, chemistry, medicine, literature and world peace and has played a major role in upgrade of human knowledge.

In this paper we will review the area and subject of the research of Nobel laureates in chemistry starting from the first award up to the current time.

The Nobel Prize winners of first five countries in chemistry are from United Sates, Germany, England, France and finally Japan. It is noted that during the first years of the award, no winner has been recorded from United States or England. Only after twenty years, the name of scientists from Britain and after 32 years, scientists from United States appear in the list of Nobel Laureates. The fact that Japan is listed among five first countries with Nobel winners, is indicative of the importance given to chemistry in Japan.

Despite the minimal share of Japan of total Nobel ranking, Japanese chemists achieved fifth grade position in Nobel chemistry ranking, this may show the importance of the chemistry for Japanese.

The share of women from Nobel Prize in Chemistry is four persons (2.5%) and share of Russian chemists is 2%.

Another point of significance in Nobel Prize award is the fact that the award is given to those chemists who have moved to biological science and medicine. It can be stated that these scientists during the quarter of century have been able to allocate 40% of the total prizes in chemistry to themselves and have also been able to win numerous Nobel Prize in the field of medicine.

Keywords: Nobel Prize, Nobel Laureates in Chemistry, Scientists' Appreciation, Nobel Foundation.

^{* .}Corresponding Auther, Tel/Fax:(+9821) 66494688, Email: massodshabani@yahoo.com

^{1.} Gezlin Teb Co., Science and Technology Park, University of Tehran-Iran

Science & Research

Green Economy

S.Sarvari 1

Planet earth since its birth has been the main source of supplying the life necessities of mankind. Because of incorrect and ill usage of this resource after industrial revolution and that mainly in their pure raw form, irrecoverable damages have been induced to planet earth. During past two decades, witnessing harmful effects of these ill usage such as rise in atmospheric temperature, biosphere destruction and increase in industrial waste pollution, has induced researcher and policy makers in advanced countries, to make changes in ways they plan for a sustained development and correct management of planet earth resources.

The result of this revised thinking and change in economic planning is formation of a movement referred to as green economy. The name "green economy" is in reference to manufacturing of products that are in coherence with nature and living environment, as well as restructuring of commerce and social infrastructure so that while more profit is gained, the amount of CO2 emission and extraction of natural resources are reduced. It's now necessary that a sustainable development based on green economy be considered as one of the most important strategic guidelines of United Nation towards improvement of the quality of life of future generations.

Keywords: Sustainable Development, Green Economy, Green Energy, Green Products, United Nations.

^{1.} Department of Biotechnology, College of Science, University of Tehran,Iran. Tel:(+98935)5973484, Fax: (+9821) 66491622, Email: sajad.sarvari@ut.ac.ir

Geothermal Energy and its Applications

A. Razzaghi 1

In this paper geothermal energy is reviewed as an example of new energies. New energies are considered to be of high importance because they provide a alternative for fossil fuels. Fossil fuels are non-renewable, they cause environmental and climate pollution. Increase in world population and the need for more energy, is another reason to turn to new and renewable energies.

In this paper we will discuss the source of geothermal energy and some of its applications. Geothermal resources are typically used directly in applications such as district heating, greenhouses, fisheries, mineral recovery, industrial process heating, snow melting, desalination and heat pumps, as well as using indirectly such as in power plants. In this paper Iceland will be introduced and exemplified as a country highly successful in utilizing new energies; after which our discussion will focus on regions of Iran which are considered to have high potential for the use of geothermal energy. Finally we will discuss alternative energies for fossil fuels (new and renewable energies) and describe importance and the advantages of these new energies both in Iran and the world.

Keywords: Geothermal Energy, New and Renewable Energy, Application of Geothermal Energy, Alternative Energies.

^{1.} Department of Physics, Institute for Advanced Studies in Basic Sciences, Zanjan-Iran. Tel: 09143049214, Email: a razzaghi@iasbs.ac.ir

Thermal Remote Sensing Technology and Its Application to Phenomena Identification

S. Kazem Alavipanah *1, S.Goodarzi Mehr, B. Khakbaz

Accessing to the information in the shortest possible time and with minimum cost is considered to be an important factor influencing the decision making outcome. In recent years, the use of modern, low-cost and fast methods such as remote sensing because of its ability to identify phenomena, have always been considered by experts, managers and decision makers,. Information obtained at the thermal infrared region, help the study of various phenomena for the reason that detection of small change in temperature, may be very effective on identifying certain phenomena and understanding the environment conditions. In this paper, we have tried to discuss on the applications of thermal infrared remote sensing such as meteorology, air quality consideration, water quality, geological maps, analyzing of the urban heat island, study of volcanoes, oil pollution consideration, predict the probability of earthquake as well as the applications of thermal imagery in health science. These applications indicate the usefulness and effectiveness of this technology in a society.

Keywords: Thermal Infrared Remote Sensing, Detection of Phenomena, Earthquake, Meteorology, Heat Island, Environmental Pollution.

^{*.} Corresponding Author, Professor, Email: salavipa@ut.ac.ir

^{1.} Department of Cartography, Faculty of Geography, University of Tehran - Iran.

Camel Milk and its Bioactive Molecules in Medical Treatments

A. Niasari-Naslaji*1 H. Arabha11 A. Atakpour 1 M. Salami²
A. A. Moosavi-Movahedi²

Organic food, the food without any drug residues and poisonous materials with therapeutic properties, has been of considerable interest by consumers worldwide. In this context, camel milk is not only considered as a food with high nutritive values but also as a food with therapeutic elements that could be used to assist the patients with some of diseases. These include, the presence of peculiar antibodies that can penetrate into the cancer tissues and the presence of insulin like molecules that could be used to treat diabetes, bioactive peptides that are produced from camel milk protein having antioxidant, antimicrobial and anti hypertension activity as well as similarity of camel milk to human milk. Bovine's milk allergy is by far the most prevalent food allergy especially in children because of the presence of β -lactoglobulin. Camel milk lacks this protein and is enriched with α -lactalbumin such as human milk. These are only a partial list of properties embodied in camel milk which is to truly a divine food.

Keywords: Camel, Camel Milk, Therapeutic Properties, Bioactive Peptides.

^{*.} Corresponding Author, Professor. Tel: (+9821) 61117146, Email: niasari@ut.ac.ir

^{1.} Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran

^{2.} Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran-Iran.

Science & Research

Environmental Factors, Genes and Human Cancers

N. Parsa 1

In the past 50 years, researchers have made a remarkable progress in identifying the biological (bacteria, viruses), biochemical (chemical compounds) and biophysical (ionizing radiation) cause of human cancers. The term "Cancer" refers to 277 forms of cancer diseases. Scientists have discovered the process of cancer formation from a consequence of accumulating multiple mutations in human genome. These genetic disruptions would eventually change the normal pathway of cellular proliferations and differentiation. These genetic alterations are frequently indicative of poor prognosis for most human cancers. Both nonhereditary and hereditary cancers are caused by genetic accidents that change the cellular growth control systems. Genes associated with human cancer formation include four classes of genes: 1. Oncogenes, 2. Tumor suppressor genes, 3. DNA repairing genes, 4. Apoptotic genes. Over activated oncogenes which cause cellular proliferation. In contrast, inactivated tumor suppressor genes lose their inhibitory effect which is crucial to prevent inappropriate growth. DNA repairing proteins fix the damage and apoptotic proteins cause the precancer cell to commit suicide. We have over millions genes in each somatic cell of our body. After sequencing all human genome in 2003, we noticed that Only 23,500 genes are active which encode over 400,000 proteins needed for physiological functions. 99.9% of genome is identical in all humans worldwide. Only 0.1% of the whole genome differ which cause the genetic variations. Up to 93% of all human cancers are non-hereditary and the remaining 7% are hereditary. A wealth of information indicating the potential use of molecular techniques for cancer screening, prognosis and monitoring of the efficacy of anticancer therapies. In recent years, molecular genetics have greatly increased our understanding of the basic mechanisms in cancer development. The essential outcome of these molecular studies is that cancer can be considered as genetic disease of the cells.

Keywords: Biological carcinogens, Molecular alterations, Human cancers.

 $1.\ Professor\ of\ Medical\ Sciences\ and\ Genetics.\ National\ Institutes\ of\ Health,\ USA.$

Email: nzparsa@yahoo.com

Transformation of Science to Technology

K. Karimian¹

Science is generated by man because of his inquisitive nature and quest to know and be able to predict what happens in our universe. Science does not necessarily focus on practical applications and has no ownership. Technology on the other hand, is aimed at practical and commercially useful applications of science and has patent-protected ownership. From socio-economic perspective, although science and technology share a common base, scientific advancement is a necessary but not sufficient condition for technological advancement of nations. It is well established that successful transformation of science to technology depends on the status of political development of a society. Democracy is the prerequisite to social and economic justice and good governance, free market economy, and open society. Combined, these are the most important guarantor for the movement of societies to technologically advanced conditions and status. Even a cursory review of the socio-political developments of the past 2 decades in Southeast Asia, East Europe and South America provides ample evidence that democratization is the key to technological advancement.

Keywords: Technology, Transformation of Science, Patent Registration, Technology Infrastructure.

^{1.} Arasto, Chemical And Pharmacological Industries Co. Tel:(+9821) 88332272, Fax: 88630677, Email: kkarimian@arasto.com

Content

Transformation of Science to Technology/K. Karimian
Cancers/N. Parsa7
Camel Milk and its Bioactive Molecules in Medical Treatments/A. Niasari Naslaji,
H. Arabha, A. Atakpour, M. Salami, Ali. A. Moosavi-Movahedi8
♦ Thermal Remote Sensing Technology and Its Application to Phenomena
◇ Identification/S. K. Alavipanah, S. Goodarzi Mehr, B. Khakbaz9
◇ Geothermal Energy and its Applications / A. Razzaghi
Nobel Laureates in Chemistry (1901-2011) / F. Nouroznejad, M. Shabani Domola12
> Ethical Instruction for Authors of Research Papers/ M. Naderi, R. Rahimi Vaghar,
Ali A. Moosavi-Movahedi
> Early Realization of Scientific Goals in Iran Twenty Years Plan / M. Bayat,
S.Salehzadeh, M.A. Zolfigol14
Networks and Technology Clusters in Iran/ H. Moradipour, M. Dastani
Theoretical and Logical Bases of Technology Education A. Khosravi, K. Poshaneh,
A. Kiani Bakhtiari16
♦ Malwares and Safety Guidelines in Cyberspace / N. Alizadeh, Z. Ansar17

Science Cultivation

Editor-in-Chief:

Ali.A.Moosavi-Movahedi

Manager Editor:

A.Zali

Executive Director:

A.Kiani-Bakhtiari

Editorial Board:

A. Ahmadi Noubari. M.R.Aref, M. Bahrami, M. Behzad, Gh. Habibi, J. Towfighi, K. Koosha, R. Malekzadeh, J. Mehrad, H. Mirzadeh, M. Mohaghegh, A. Mossalanejad, A. A. Saboury, A. Shafieei, M. Shamsipur, A. Shockravi, S. Sohrabpour, S. Vaezzadeh, B. Yazdi Samadi, A. Zali, N.Zargham, M.A. Zolfigol

Science Cultivation "Journal" is published by Foundation for the Advancement of Science and Technology in Iran.(FAST-IRAN).

This journal aims at advancing and accelerating the science and technology policy in Iran.

License Holder: Foundation for the Advancement of Science and Technology in Iran. (FAST-IRAN)

ISSN: X 8003-539

Circulation: 1000 Price: 15000 Rials

Publisher: Foundation for the Advancement of Science and Technology in Iran

Print: Mosallas Designers (22764026)

Layout: M.Farzad

Address: Unit 2., No. 4., West Shahrooz dead end, Dosstan Blvd., Dosstan St. Tavanir Ave. Tehran – Iran

Tel/Fax: (+9821) 88783109 Website: www.fast-iran.ir Email:SC@fast-iran.ir

In The Name Of God