Molecules That Will Change the Future

Document Type : Promotion Article

Author

Faculty of chemistry, Shahid Beheshti University, Tehran, Iran.

Abstract

Climate change caused by greenhouse gases by producing more than 80 percent of the global energy from fossil fuels, which is associated with a large amount of greenhouse gases, regulations and limitations on non-renewable fossil fuels consumptions, and exponential increase in energy demand are the major challenges for today’s industrial communities. The consumption rate of nitrogenous nutrients is higher than the population growth. Moreover, one to two percent of the energy consumption and three to five percent of the natural gas production in the world are allocated to the Haber-Bosch process to produce ammonia being the only nitrogenous nutrient source in agriculture. Furthermore, limitations and decreases in sweet water resources along with the increases in population and global warming are serious concerns and challenges. The source of all these challenges lie in the molecules found in nature that make up the important processes of the lifecycle and of photosynthesis, such as water, methane, carbon dioxide, ammonia, oxygen, nitrogen and hydrogen. In this work, research and technology-based approaches and strategies have been presented to overcome these challenges in the future by introducing the standing and role of each of these seven crucial molecules that affect the above challenges.

Keywords


[1]. Barber, J., Tran, P. D. (2013). From Natural to Artificial Photosynthesis, Journal of the Royal Society Interface, Vol.10, No.81, PP. 20120984.
[2]. Miller, S. L. (1955). Production of Some Organic Compounds under Possible Primitive Earth Conditions, Journal of the American Chemical Society, Vol.77, No.9, PP. 2351–2361.
[3]. Haber, F., Rossignol, R. L. (1913). The Production of Synthetic Ammonia, Journal of Industrial and Engineering Chemistry, Vol.5, No.4, PP. 328–331.
[4]. Schwach, P., Pan, X., Bao, X. (2017). Direct Conversion of Methane to Value-Added Chemicals over Heterogeneous Catalysts: Challenges and Prospects, Chemical Reviews, Vol.117, No.13, PP. 8497−8520.
[5]. Shaabani, A., Ghadari, R. (2010). Direct Sulfonation of Methane to Methanesulfonic Acid, Industrial & Engineering Chemistry Research, Vol.49, No.16, PP. 7685–7686.
[6]. Sakakura, T., Choi, J-C., Yasuda, H. (2007). Transformation of Carbon Dioxide, Chemical Reviews, Vol.107, No.6, PP. 2365–2387.
[7]. Wang, Y., Suzuki, H., Xie, J., Tomita, O., Martin, D. J., Higashi, M., Kong, D., Abe, R., Tang, J. (2018). Mimicking Natural Photosynthesis: Solar to Renewable H2 Fuel Synthesis by Z-Scheme Water Splitting Systems, Chemical Reviews, Vol.118, No.10, PP. 5201–5241.
[8]. Ball, P. (1999). Life's Matrix: A Biography of Water, Farrar, Straus and Giroux, New York.
[9]. Gray, H. B., Winkler, J. R. (2018). Living with Oxygen, Accounts of Chemical Research, Vol.51, No. 8, PP. 1850–1857.
]10[. کریمیان، شکراله (1396). دورهم-تنیدگی کوانتومی رویکردی علمی به سوی دورنوردی انسان، مجلــه نشــاء علــم، فصلنامــه علمــی پژوهشــی، سال هفتم، شماره دوم، خرداد ماه، ص 128-122
[11]. Montagnier, L., Aissa, E., Giudice, D. Lavallee, C., Tedeschi, A., Vitiello, G. (2011). DNA Waves and Water, J. Phys.: Conf. Ser., Vol. 306, 012007.
[12]. Wang, Y., Wang, C., Song, X., Huang, M., Megarajan, S. K., Shaukatd, S. F., Jiang, H. (2018). Improved Light-harvesting and Thermal Management for Efficient Solar-driven Water Evaporation Using 3D Photothermal Cones, Journal of Materials Chemistry A, Vol. 6, PP. 9874-9881.
[13]. News (1977). Prototype Solar Cell Used in Ammonia Process, Chemical Engineering News, Vol. 55, No.40, PP. 19–20.
[14]. Pikaar, I., Matassa, S., Rabaey, K., Bodirsky, B. L., Popp, A., Herrero, M., Verstraete, W. (2017). Microbes and the Next Nitrogen Revolution, Environmental Science & Technology, Vol.51, No.13, PP. 7297−7303.
[15]. Zhu, L., Gao, M., Peha, C. N. K., Ho, G. W. (2018). Solar-Driven Photothermal Nanostructured Materials Designs and Prerequisites for Evaporation and Catalysis Applications, Materials Horizons, Vol.5, No.3, PP. 323-343.
[16]. Chu, S., Majumdar, A. (2012). Opportunities and Challenges for a Sustainable Energy Future, Nature, Vol.488, No.7411, PP. 294−303.
[17]. Seh, Z. W., Kibsgaard, J., Dickens, C. F., Chorkendorff, I., Nørskov, J. K., Jaramillo, T. F. (2017). Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design, Science, Vol.355, No.146, PP. 1-12.
[18]. Chen, X., Shen, S., Guo, L., Mao, S. S. (2010). Semiconductor-based Photocatalytic Hydrogen Generation, Chemical Reviews, Vol.110, No.11, PP. 6503–6570.
[19]. Xu, Y., Kraft, M., Xu, R., (2016). Metal-free Carbonaceous Electrocatalysts and Photocatalysts for Water Splitting, Chemical Society Review, Vol.45, No.11, PP. 3039-3052.
[20]. Yuan, Y-J., Yu, Z-T., Chen, D-Q., Zou, Z-G. (2017). Metal-complex Chromophores for Solar, Chemical Society Review, Vol.46, No.3, PP. 603-631.
[21]. Sakakura, T., Choi, J. C., Yasuda, H. (2007). Transformation of Carbon Dioxide, Chemical Reviews, Vol.107, No.6, PP. 2365−2387.