ماهی زبرا: گونه مدل مطالعاتی بیماری‌های انسانی و تغییرات رفتارشناسی

نوع مقاله : مقاله ترویجی

نویسندگان

1 دانشگاه گیلان، دانشکده منابع طبیعی،گروه شیلات

2 گروه شیلات، دانشکده منابع طبیعی، دانشگاه گیلان، صومعه‌سرا

چکیده

ماهی زبرا ( Danio rerio) یک‌گونه ماهی استخوانی متعلق به خانواده کپور ماهیان بوده و بومی آب شیرین رودخانه‌های شمال شرقی کشور هند و بنگلادش می‌باشد. این ماهی به‌عنوان یک‌گونه آکواریومی و دارای زندگی گروهی-اجتماعی در دنیا شناخته شده است. این گونه از نظر مطالعات آزمایشگاهی دارای مزایای زیادی است که شامل نگهداری آسان، قدرت تولیدمثل بالا، شفافیت بدن در مراحل جنینی و لاروی، تراکم‌پذیری بالا و هزینه نگهداری پایین می‌باشد. از مزایای دیگر این‌گونه امکان بررسی گسترده مراحل تخم، جنینی، لاروی و بالغ در مطالعات علوم مختلف می‌باشد. امروزه ماهی زبرا به‌عنوان یک‌گونه مدل در علوم شامل عصب‌شناسی، سم‌شناسی، ژنتیک، اختلالات غدد درون‌ریز، زیست‌شناسی مهره‌داران، تکامل زیستی، بیماری‌های انسانی و همچنین رفتارشناسی شناخته‌شده می‌باشد. در این مقاله ابتدا مروری بر اهمیت استفاده از ماهی زبرا به‌عنوان مدل و گونه پیشرو در انجام مطالعات بیماری‌های مختلف انسانی پرداخته می‌شود. در ادامه به بررسی و ارزیابی این‌گونه در مطالعات رفتارشناسی و پاسخ‌های رفتاری این‌گونه نسبت به محرک‌های محیطی با استفاده از حواس بویایی، شنوایی و بینایی می‌پردازیم. در پایان، محققین رفتارشناسی باید رفاه جانوران در اسارت را در نظر گرفته و اثرات بالقوه محرک‌های محیطی که قابل ادراک توسط حواس در ماهی‌ها می‌باشد را در نظر داشته باشند. 

کلیدواژه‌ها


عنوان مقاله [English]

Zebrafish: A Model to Study Human Diseases and Behavioural Changes

نویسندگان [English]

  • Saeed Shafiei Sabet 1
  • Fatemeh Alizadeh Ladmakhi 2
  • Shaghayegh Jami 2
1 University of Guilan, Faculty of Natural resources, Fisheries Department, Beavioural Biology Section
2 Fisheries department, Faculty of natural resources, University of Guilan, Sowmwh Sara
چکیده [English]

Zebrafish Danio rerio is a bony fish species belonging to the carp family and native to freshwater rivers in north-eastern of India and Bangladesh. This fish is known as an aquarium fish and has a group-social life in the world. This species has many advantages in terms of laboratory studies, including easy maintenance, high reproductive rate, body transparency in embryonic and larval stages, high density and low maintenance cost. Another advantage of this species is the possibility of extensive study of egg, embryonic, larval and adult stages in various scientific studies. Nowadays, zebrafish is a well-known and prominent model in the sciences, including neurology, toxicology, genetics, endocrine disorders, vertebrate biology, biological evolution, human disease, and also well-known in behavioural studies. Here, in this review, firstly we report the importance of using zebrafish as a model and pioneer species in the study of a broad range of human diseases. As a follow up, we examine the validity of this species in behavioural studies and their behavioural responses to environmental stimuli using chemical senses, hearing and visual sensory modalities. Finally, investigators of fish behaviour should take into account animal welfare issues and consider the potential for multi modal effects on laboratory tests.

کلیدواژه‌ها [English]

  • Science
  • Human Diseases
  • Behavioural Biology
  • zebrafish
[1]. Spence, R., Fatema, M. K., Reichard, M., Huq, K. A., Wahab, M. A., Ahmed, Z. F., & Smith, C. (2006). The distribution and habitat preferences of the zebrafish in Bangladesh, Fish Biol., Vol.69, No.5, PP.1435–1448.
[2]. Laale, H. W. (1977). The biology and use of zebrafish, Brachydanio rerio in fisheries research. A literature review, Fish Biol., Vol.10, No.2, PP.121-173.
[3]. Haffter, P., Granato, M., Brand, M., Mullins, M.C., Hammerschmidt, M., Kane, D.A., Odenthal, J., Van Eeden, F.J., Jiang, Y.J., Heisenberg, C.P. and Kelsh, R.N. (1996). The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio, Development, Vol. 123, No.1, PP. 1–36.
[4]. Lawrence, C. (2007). The husbandry of zebrafish (Danio rerio): A review, Aquaculture, Vol. 269, PP. 1–20.
[5]. M. Westerfield, “The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio), 5th Edition,” Univ. Oregon Press. Eugene, 2007.
[6]. Streisinger, G., Walker, C., Dower, N., Knauber, D., & Singer, F. (1981). Production of clones of homozygous diploid zebra fish (Brachydanio rerio), Nature, Vol.291, No.5813, PP.293-296.
[7]. Seth, A., Stemple, D. L., & Barroso, I. (2013). The emerging use of zebrafish to model metabolic disease, DMM Dis. Model. Mech, Vol. 6, No. 5, PP. 1080–1088.
[8]. Kimmel, C. B. (1989). Genetics and early development of zebrafish. Trends in Genetics, No.5, PP.283-288.
[9]. M. Granato and C. Nüsslein-Volhard. (1996). Fishing for genes controlling development, Curr. Opin. Genet. Dev., Vol.6, No.4, PP.461-468.
[10]. Grunwald, D. J., & Eisen, J. S. (1996). Headwaters of the zebrafish - emergence of a new model vertebrate, Nature Reviews Genetics. Vol.3, No.9, PP.717-724.
[11]. R. Gerlai, M. Lahav, S. Guo, and A. Rosenthal. (2000). Drinks like a fish: Zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects, Pharmacol. Biochem. Behav, No.4, PP.773-782.
[12]. Briggs, J. P. (2002). The zebrafish: a new model organism for integrative physiology. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, Vol.282, No.1, R3-R9.
[13]. Spence, R., Fatema, M. K., Reichard, M., Huq, K. A., Wahab, M. A., Ahmed, Z. F., & Smith, C. (2006). The distribution and habitat preferences of the zebrafish in Bangladesh, Fish Biol, Vol.69, No.5, PP.1435–1448.
[14]. K. Dooley and L. I. Zon. (2000). Zebrafish: A model system for the study of human disease, Current Opinion in Genetics and Development. Vol.10, No.3, PP.252-256.
[15]. W. Driever, D. Stemple, A. Schier, and L. Solnica-Krezel. (1994). Zebrafish: genetic tools for studying vertebrate development, Trends in Genetics. Vol.10, No. 5, PP.152-159.
[16]. Nüsslein-Volhard, C., & Wieschaus, E. (1980). Mutations affecting segment number and polarity in Drosophila. Nature, Vol.287, No.5785, PP.795-801.
[17]. K. Howe et al., “The zebrafish reference genome sequence and its relationship to the human genome,” Nature, 2013.
[18]. Hill, A. J., Teraoka, H., Heideman, W., & Peterson, R. E. (2005). Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicological sciences, Vol.86, No.1, PP.6-19.
[19]. Jönsson, M. E., Brunström, B., & Brandt, I. (2009). The zebrafish gill model: Induction of CYP1A, EROD and PAH adduct formation. Aquatic toxicology, Vol.91, No.1, PP.62-70.
[20]. S. Scholz, S. Fischer, U. Gündel, E. Küster, T. Luckenbach, and D. Voelker. (2008). The zebrafish embryo model in environmental risk assessment - Applications beyond acute toxicity testing, Environ. Sci. Pollut. Res, Vol. 15, No. 5, PP. 394–404.
[21]. Amatruda, J. F., & Zon, L. I. (1999). Dissecting hematopoiesis and disease using the zebrafish. Developmental biology, Vol.216, No.1, PP.1-15.
[22]. Gehrig, J., Reischl, M., Kalmár, É., Ferg, M., Hadzhiev, Y., Zaucker, A., Song, C., Schindler, S., Liebel, U. and Müller, F. (2009). Automated high-throughput mapping of promoter-enhancer interactions in zebrafish embryos. Nature methods, Vol.6, No.12, PP.911.
[23]. Warren, K. S., & Fishman, M. C. (1998). Physiological genomics: mutant screens in zebrafish. American Journal of Physiology-Heart and Circulatory Physiology, Vol.275, No.1, H1-H7.
[24]. Drummond, I.A., Majumdar, A., Hentschel, H., Elger, M., Solnica-Krezel, L., Schier, A.F., Neuhauss, S.C., Stemple, D.L., Zwartkruis, F., Rangini, Z. and Driever, W., (1998). Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. Development, Vol.125, No.23, PP.4655-4667.
[25]. Miklósi, Á., & Andrew, R. J. (2006). The zebrafish as a model for behavioral studies. Zebrafish, Vol.3, No.2, PP.227-234.
[26]. Wisenden, B. D., Vollbrecht, K. A., & Brown, J. L. (2004). Is there a fish alarm cue? Affirming evidence from a wild study. Animal Behaviour, Vol.67, No.1, PP.59-67.
[27]. Magurran, A. E., Irving, P. W., & Henderson, P. A. (1996). Is there a fish alarm pheromone? A wild study and critique. Proceedings of the Royal Society of London. Series B: Biological Sciences, Vol.263, No.1376, PP.1551-1556.
[28]. Pfeiffer, W. (1963). Alarm substances. Experientia, Vol.19, No.3, PP.113-123.
[29]. Hall, D., & Suboski, M. D. (1995). Visual and olfactory stimuli in learned release of alarm reactions by zebra danio fish (Brachydanio rerio). Neurobiology of learning and memory, Vol.63, No.3, PP.229-240.
[30]. Brown, G. E., & Smith, R. J. F. (1998). Acquired predator recognition in juvenile rainbow trout (Oncorhynchus mykiss): conditioning hatchery-reared fish to recognize chemical cues of a predator. Canadian Journal of Fisheries and Aquatic Sciences, Vol.55, No.3, PP.611-617.
[31]. Brown, G. E., & Godin, J. G. J. (1999). Chemical alarm signals in wild Trinidadian guppies (Poecilia reticulata). Canadian Journal of Zoology, Vol.77, No.4, PP.562-570.
[32]. Brown, G. E., LeBlanc, V. J., & Porter, L. E. (2001). Ontogenetic changes in the response of largemouth bass (Micropterus salmoides, Centrarchidae, Perciformes) to heterospecific alarm pheromones. Ethology, Vol.107, No.5, PP.401-414.
[33]. Chivers, D. P., & Smith, R. J. F. (1998). Chemical alarm signalling in aquatic predator-prey systems: a review and prospectus. Ecoscience, Vol.5, No.3, PP.338-352.
[34]. Chivers, D. P., Brown, G. E., & Smith, R. J. F. (1996). The evolution of chemical alarm signals: attracting predators benefits alarm signal senders. The American Naturalist, Vol.148, No.4, PP.649-659.
[35]. Higgs, D. M., Souza, M. J., Wilkins, H. R. Presson, J. C., and Popper, A. N. (2002). Age- and size-related changes in the inner ear and hearing ability of the adult zebrafish (Danio rerio), JARO - J. Assoc. Res. Otolaryngol, Vol. 3, No. 2, PP.174–184.
[36]. Shafiei Sabet, S., Y. Y. Neo, and H. Slabbekoorn. (2016). Impact of anthropogenic noise on aquatic animals: From single species to community- level effects, in Advances in Experimental Medicine and Biology, PP. 957-961.
[37]. Sneddon, L. U., Lopez-Luna, J., Wolfenden, D. C., Leach, M. C., Valentim, A. M., Steenbergen, P. J., ... & Brown, C. (2018). Fish sentience denial: Muddying the waters. Animal Sentience, Vol.3, No.21, P.1.
[38]. Shafiei Sabet, S., Wesdorp, K., van Dooren, D., & Slabbekoorn, H. (2016, July). Sound affects behavior of captive zebrafish: always consider the potential for acoustic effects on your laboratory tests. Acoustical Society of America., Vol.27, No.1, P.010010.
[39]. White, L. J., Thomson, J. S., Pounder, K. C., Coleman, R. C., & Sneddon, L. U. (2017). The impact of social context on behaviour and the recovery from welfare challenges in zebrafish, Danio rerio. Animal Behaviour, Vol.132, PP.189-199.
[40]. Shafiei Sabet, S., Y. Y. Neo, and H. Slabbekoorn. (2015). The effect of temporal variation in sound exposure on swimming and foraging behaviour of captive zebrafish, Animal Behaviour, Vol. 107, PP. 49–60.
[41]. Shafiei Sabet, S., K. Wesdorp, J. Campbell, P. Snelderwaard, and Slabbekoorn, H. (2016). Behavioural responses to sound exposure in captivity by two fish species with different hearing ability, Journal of Anim. Behav, Vol. 116, PP. 1–11.
[42]. Halfwerk, W. and Slabbekoorn, H., (2015). Pollution going multimodal: the complex impact of the human-altered sensory environment on animal perception and performance. Biology letters, Vol.11, No.4, PP.20141051.
[43]. Shafiei Sabet, S., Van Dooren, D., and Slabbekoorn, H. (2016). Son et lumiere: Sound and light effects on spatial distribution and swimming behavior in captive zebrafish. Environmental pollution, Journal of Environmental pollution, Vol.212, PP.480-488.
[44]. Easter Jr, Stephen S., and Gregory N. Nicola. (1996). The development of vision in the zebrafish (Danio rerio). Journal of Developmental biology, Vol.180. No.2, PP.646-663.
[45]. Colwill, R. M., Raymond, M. P., Ferreira, L., & Escudero, H. (2005). Visual discrimination learning in zebrafish (Danio rerio), Behavioural Processes, Vol.70, No.1, PP.19-31.
[46]. Peeters, B. W. M. M. Moeskops, M. and Veenvliet A. R. J. (2016). Color Preference in Danio rerio: Effects of Age and Anxiolytic Treatments, Zebrafish, Vol. 13, No. 4, PP. 330–334.
[47]. Spence R. and Smith C. (2008). Innate and learned colour preference in the zebrafish, Danio rerio, Ethology, Vol. 114, No. 6, PP. 582–588.
 
[48]. Williams, F. E., White, D. and Messer, W. S. (2002). A simple spatial alternation task for assessing memory function in zebrafish, Behav. Processes, Vol. 58, No. 3, PP. 125–132.
[49]. Roberts, A. C., Bill, B. R., & Glanzman, D. L. (2013). Learning and memory in zebrafish larvae. Frontiers in neural circuits, Vol.7, No.126.
[50]. Broom, D. M. (1991). Animal welfare: concepts and measurement. Journal of animal science, Vol.69, No.10, PP.4167-4175.
[51]. Fraser, D. (2008). Understanding animal welfare. Acta Veterinaria Scandinavica, Vol.50, No.1, S1.
[52]. Broom, D. M. (1988). The scientific assessment of animal welfare. Applied Animal Behaviour Science, Vol.20, No.1-2, PP.5-19.
[53]. Sneddon, L. U. (2006). Ethics and welfare: pain perception in fish. in Bulletin of the European Association of Fish Pathologists.