حشرات منبع شگفت­ انگیز زیست­ الگو و الهام­ زیستی

نوع مقاله : مقاله ترویجی

نویسندگان

1 دانشگاه تهران،دانشکده علوم و فنون ،مهندسی علوم زیستی، تهران، ایران.

2 گروه مهندسی علوم زیستی،دانشکده علوم و فنون نوین، دانشگاه تهران، تهران، ایران.

چکیده

دانش زیست­الگو و الهام­زیستی، تقلید یا الهام از موجودات زنده و پدیده­های طبیعی به منظور طراحی و ساخت وسایل و تدبیر فرایندهایی است که بتواند خسارات و مخاطراتی را که انسان به­دلیل کاربرد برخی فناوری­ها و زندگی صنعتی به طبیعت تحمیل نموده کاهش داده یا حذف نماید. در دنیای جانوری گروه بزرگ و متنوع حشرات با پراکنش گسترده در جهان، به­دلیل ویژگی­های ساختمان بدن و رفتارهای شگفت­انگیز از مهمترین الگوها برای دانشمندان هستند. الگوبرداری موفقیت­آمیز از این الگوهای ریز­ساختار بی­نظیر، به حل بسیاری از مشکلات کمک نموده است. حجم عظیمی از اطلاعات در این سیستم­های حیاتی کوچک وجود دارد. الگوگیری از حشرات عموما در هفت زمینه مختلف پایه زیست­الگو می­باشند: (1) مواد و فناوری، (2) سطوح، (3) چسبندگی، (4) بینایی، (5) نور، (6) حسگرها، (7) رباتیک برای کاربردهای مختلف خلاصه می­شود. الگوبرداری و الهام از این پدیده­های خلقت محدوده­ای ندارد و با پیشرفت دانش هر روز زمینه­های جدیدتری به صورت پویا کشف می­شود. این مقاله به مرور منابع زیست­الگو و الهام­زیستی از حشرات می­پردازد. 

کلیدواژه‌ها


عنوان مقاله [English]

Insects Amazing Source of Biomimetics and Bioinspiration

نویسندگان [English]

  • Mahdi Zarabi 1
  • Narges Khosravi 2
1 University of Tehran, Faculty of Science and Technology, Life Sciences Engineering, Tehran, Iran.
2 Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
چکیده [English]

Biomimetics and bioinspiration, is the mimicry or inspiration of living things and natural phenomena to design and build devices and planning of processes that can reduce or delete the damages and hazards that humans may cause to nature due to the use of certain technologies and industrial phenomena. Among animals, insects as a large group with a widespread distribution throughout the world is the most important models for scientists because of their body structure characteristics and amazing behaviors. Successful mimicry of these unique microstructures’ models helps solving many problems. There is a huge amount of information in these small biological models. Insect modeling is generally summarized based on seven basic biomimetics areas :( 1) Material science and technology, (2) Surfaces science, (3) Science of adhesives, (4) Optics, (5) Photonics, (6) Sensorics and (7) Robotics for different applications. However, mimicry and inspiration for these phenomena of creation are not limited and new knowledge shall discover every day. This article reviews sources of biomimetics and bioinspiration from insects.

کلیدواژه‌ها [English]

  • Biomimetics and Bioinspiration
  • Insects
  • Microstructure Models
  • new technologies
[1]. Stassen, Chris (2005-09-10). "The Age of the Earth". Talk Origins Archive. Retrieved 2008-12-30.
[2]. May, R. M. (1988). How many species are there on earth? Science, 241(4872), 1441-1449.
[3]. Stringer, C.B. (1994), "Evolution of Early Humans", in Jones, Steve; Martin, Robert; Pilbeam, David, The Cambridge Encyclopedia of Human Evolution, Cambridge University Press, p. 242, ISBN 978-0-521-32370-3.
[4]. McHenry, H.M (2009), "Human Evolution", in Ruse, Michael; Travis, Joseph, Evolution: The First Four Billion Years, Cambridge, Massachusetts: The Belknap Press of Harvard University Press, p. 265, ISBN 978-0-674-03175-3.
[5]. موسوی موحدی، ع.ا. (1392) . زیست الگو: همگرایی در علم و حکمت، نشریه نشاء علم، مجلد4، شماره 1،صص 6-9 .
[6]. Benyus, J.M. (2009) Biomimicry: Innovation inspired by nature. HarperCollins e-books.
[7]. Hwang, J., Jeong, Y., Park, J. M., Lee, K. H., Hong, J. W., & Choi, J. (2015). Biomimetics: forecasting the future of science, engineering, and medicine. International Journal of Nanomedicine, 10, 5701.
[8]. Bar-Cohen, Y. (2006). Biomimetics—using nature to inspire human innovation. Bioinspiration & Biomimetics, 1(1), P1.
[9]. موسوی موحدی، زینب (1395). فنآوری های جدید بر مبنای دانش زیست الگو و الهام زیستی، نشریه نشاء علم، مجلد7، شماره1،صص 53-61.
[10]. Gorb, S.N. (2011). Insect-inspired technologies: insects as a source for biomimetics, in Insect Biotechnology, Springer. p. 241-264.
[11]. Liu, Z., Zhang, Z., & Ritchie, R. O. (2018). On the materials science of nature's arms race. Advanced Materials, 30(32), 1705220.
[12]. Vaclaw, M. C., Sprouse, P. A., Dittmer, N. T., Ghazvini, S., Middaugh, C. R., Kanost, M. R. ... & Dhar, P. (2018). Self-Assembled Coacervates of Chitosan and an Insect Cuticle Protein Containing a Rebers–Riddiford Motif. Biomacromolecules, 19(7), 2391-2400.
[13]. Pillai, C. K. S., Paul, W., & Sharma, C. P. (2009). Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in polymer science, 34(7), 641-678.
[14]. Fernandez, J. G., & Ingber, D. E. (2013). Bioinspired chitinous material solutions for environmental sustainability and medicine. Advanced Functional Materials, 23(36), 4454-4466.
[15]. Fernandez, J. G., & Ingber, D. E. (2012). Unexpected strength and toughness in chitosan‐fibroin laminates inspired by insect cuticle. Advanced materials, 24(4), 480-484.
[16]. Zeighami, F., & Tehran, M. A. (2016). Developing optically efficient nanofiber coatings inspired by cyphochilus white beetle. Journal of Industrial Textiles, 46(2), 495-509.
[17]. Kim, J. H., Moon, J. H., Lee, S. Y., & Park, J. (2010). Biologically inspired humidity sensor based on three-dimensional photonic crystals. Applied Physics Letters, 97(10), 103701.
[18]. Han, Z., Mu, Z., Yin, W., Li, W., Niu, S., Zhang, J., & Ren, L. (2016). Biomimetic multifunctional surfaces inspired from animals. Advances in Colloid and Interface Science, 234, 27-50.
[19]. Gao, X., & Jiang, L. (2004). Biophysics: water-repellent legs of water striders. Nature, 432(7013), 36.
[20]. Nosonovsky, M., & Bhushan, B. (2010). Green tribology: principles, research areas and challenges. Philosophical Translations of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1929), 4677-4694.
[21]. Favi, P. M., Yi, S., Lenaghan, S. C., Xia, L., & Zhang, M. (2014). Inspiration from the natural world: from bio-adhesives to bio-inspired adhesives. Journal of Adhesion Science and Technology, 28(3-4), 290-319.
[22]. Betz, O., Koerner, L., & Gorb, S. (2009). An insect’s tongue as the model for two-phase viscous adhesives? ADHESION ADHESIVES& SEALANTS, 6(1), 32-35.
[23]. Bogue, R. (2013). Developments in biomimetic vision. Sensor Review, 33(1), 14-18.
[24]. Stürzl, W., Böddeker, N., Dittmar, L., & Egelhaaf, M. (2010). Mimicking honeybee eyes with a 280 field of view catadioptric imaging system. Bioinspiration & Biomimetics, 5(3), 036002.
[25]. Yi, W., Xiong, D. B., & Zhang, D. (2016). Biomimetic and Bioinspired Photonic Structures. Nano Advances, 1, 62-70.
[26]. Potyrailo, R. A., Ghiradella, H., Vertiatchikh, A., Dovidenko, K., Cournoyer, J. R., & Olson, E. (2007). Morpho butterfly wing scales demonstrate highly selective vapour response. Nature Photonics, 1(2), 123.
[27]. Ragaei, M., Sabry, A. K. H., & Abdel-Rahman, A. (2016). Insect’s photonic crystals and their applications. Bioscience Research, 13(1), 15-20.
[28]. Vukusic, P., & Sambles, J. R. (2003). Photonic structures in biology. Nature, 424(6950), 852.
[29]. انزابی، نعیمه (1395). استفاده از علم زیست الگو در منسوجات، نشریه نشاء علم، مجلد 7، شماره 1، صص 62-70.
[30]. Takemura, S. Y., Stavenga, D. G., & Arikawa, K. (2007). Absence of eye shine and tapetum in the heterogeneous eye of Anthocharis butterflies (Pieridae). Journal of Experimental Biology, 210(17), 3075-3081.
[31]. Ghiradella, H. T., & Butler, M. W. (2009). Many variations on a few themes: a broader look at development of iridescent scales (and feathers). Journal of the Royal Society Interface, 6(suppl_2), S243-S251.
[32]. Xu, J., & Guo, Z. (2013). Biomimetic photonic materials with tunable structural colors. Journal of Colloid and Interface Science, 406, 1-17.
[33]. Johnson, E. A. C., Bonser, R. H. C., & Jeronimidis, G. (2009). Recent advances in biomimetic sensing technologies. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1893), 1559-1569.
[34]. Schmitz, H., Kahl, T., Soltner, H., & Bousack, H. (2011, March). Biomimetic infrared sensors based on the infrared receptors of pyrophilous insects. In Bioinspiration, Biomimetics, and Bioreplication (Vol. 7975, p. 797506).
[35]. Lee, T., Jang, S., Jeong, M., & Cho, D. I. D. (2016, October). Allometric scaling of insects and animals for biomimetic robot design considerations. In 2016 16th International Conference on Control, Automation and Systems (ICCAS) (pp. 1541-1546). IEEE.
[36]. Delcomyn, F., & Nelson, M. E. (2000). Architectures for a biomimetic hexapod robot. Robotics and Autonomous Systems, 30(1-2), 5-15.
[37]. Aditya, S. K. V., Ignasov, J., Filonenko, K., Larsen, J. C., Baird, E., Hallam, J., ... & Manoonpong, P. (2017). Bio-Inspired Design and Kinematic Analysis of Dung Beetle-Like Legs. In 2nd International Symposium on Swarm Behavior and Bio-Inspired Robotics.
[38]. Ward, T. A., Rezadad, M., Fearday, C. J., & Viyapuri, R. (2015). A review of biomimetic air vehicle research: 1984-2014. International Journal of Micro Air Vehicles, 7(3), 375-394.
[39]. Liu, H., Ravi, S., Kolomenskiy, D., & Tanaka, H. (2016). Biomechanics and biomimetics in insect-inspired flight systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1704), 20150390.
[40]. Lentink, D. (2014). Bioinspired flight control. Bioinspiration & Biomimetics, 9(2), 020301.
[41]. Tripplehorn, C. A., & Johnson, N. F. (2005). Borror and DeLong’s introduction to the study of insects. Thomson Brooks/Cole, Belmont, California.
[42]. Koh, J. S., Yang, E., Jung, G. P., Jung, S. P., Son, J. H., Lee, S. I., ... & Cho, K. J. (2015). Jumping on water: Surface tension–dominated jumping of water striders and robotic insects. Science, 349(6247), 517-521.
[43]. Graham, P., & Philippides, A. (2017). Vision for navigation: What can we learn from ants? Arthropod Structure & Development, 46(5), 718-722.
[44]. Gorb, S. N., & Gorb, E. V. (2016). Insect-inspired architecture: insects and other arthropods as a source for creative design in architecture. In Biomimetic Research for Architecture and Building Construction (pp. 57-83). Springer, Cham.
[45]. Pohl, G., & Nachtigall, W. (2015). Biomimetics for Architecture & Design: Nature-Analogies-Technology. Springer.
[46]. Moosavi-Movahedi, A. A., Semsarha, F., Heli, H., Nazari, K., Ghourchian, H., Hong, J. ... & Sefidbakht, Y. (2008). Micellar histidinate hematin complex as an artificial peroxidase enzyme model: Voltammetric and spectroscopic investigations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 320(1-3), 213-221.
[47]. Farivar, F., Moosavi-Movahedi, A. A., Sefidbakht, Y., Nazari, K., Hong, J., & Sheibani, N. (2010). Cytochrome c in sodium dodecyl sulfate reverse micelle nanocage: From a classic electron carrier protein to an artificial peroxidase enzyme. Biochemical Engineering Journal, 49(1), 89-94.
[48]. Gharibi, H., Moosavi-Movahedi, Z., Javadian, S., Nazari, K., & Moosavi-Movahedi, A. A. (2011). Vesicular Mixed Gemini− SDS− Hemin− Imidazole Complex as a Peroxidase-Like Nano Artificial Enzyme. The Journal of Physical Chemistry B, 115(16), 4671-4679.
[49]. Hong, J., Wang, W., Huang, K., Yang, W. Y., Zhao, Y. X., Xiao, B. L., ... & Moosavi-Movahedi, A. A. (2012). A highly efficient nano-cluster artificial peroxidase and its direct electrochemistry on a nano complex modified glassy carbon electrode. Analytical Sciences, 28(7), 711-716.
[50]. Hong, J., et al., Direct electrochemistry of artificial peroxidase based on self-assembled cytochrome c-SDS-nano-micelle. Analytical letters, 2012. 45(15): p. 2221-2235.
[51]. Kermani, H. A., Shockravi, A., Moosavi-Movahedi, Z., Khalafi-Nezhad, A., Behrouz, S., Tsai, F. Y. ... & Moosavi-Movahedi, A. A. (2013). A surfactant–heme–sulfonyl imidazole system as a nano-artificial enzyme. Journal of the Iranian Chemical Society, 10(5), 961-968.
[52]. Yang, W. Y., Hong, H., Zhao, Y. X., Xiao, B. L., Gao, Y. F., Yang, T., ... & Moosavi-Movahedi, Z. (2013). Electrochemical study of a nano vesicular artificial peroxidase on a functional nano complex modified glassy carbon electrode. J. New Mat. Electrochem. Syst, 16, 89-95.
[53]. Moosavi-Movahedi, Z., Kalejahi, E. S., Nourisefat, M., Maghami, P., Poursasan, N., & Moosavi-Movahedi, A. A. (2017). Mixed SDS-Hemin-Imidazole at low ionic strength being efficient peroxidase-like as a nanozyme. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 522, 233-241.
[54]. Sajadimehr, Y., Moosavi‐Movahedi, Z., Haghighi, M. G., Miyardan, A. B., Nourisefat, M., & Moosavi‐Movahedi, A. A. (2019). Iron‐Porphyrin/Cysteine/PEG as Pseudo‐Chloroperoxidase Nanozyme. ChemistrySelect, 4(35), 10357-10364.
[55]. استاندارد ملی ایران، بیومیمتیک(زیست الگو)، اصطلاحات و تعاریف، مفاهیم و روش‌شناسی. شماره22127 چاپ اول 1396، ICS: 07.080 ، کمیته تدوین: دکتر علی‌اکبر موسوی موحدی(رئیس)، دکتر فرنوش عطار(دبیر)، دکتر مهدی ضرابی، دکتر منصوره مظاهری، دکتر زینب موسوی موحدی و دکتر مریم نوری صفت.