بررسی گونه های ویروس کرونا جدید 2019 و واکسن ها

نوع مقاله : مقاله ترویجی

نویسندگان

1 مرکز تحقیقات پروتئین، دانشگاه شهیدبهشتی، ولنجک، تهران، یران.

2 مرکز تحقیقات پروتئین، دانشگاه شهیدبهشتی، ولنجک، تهران، ایران.

3 دانشگاه شهید بهشتی،مرکز تحقیقات پروتئین،آزمایشگاه نانو بیوتکنولوژی

4 مرکز تحقیقات پروتئین، دانشگاه شهیدبهشتی، ولنجک ، تهران، ایران.

چکیده

با توجه به گزارش‌هایی مبنی بر وجود جهش‌های موجود در ویروس کرونا جدید 2019، هدف اصلی مقاله معرفی انواع جهش­ها و گونه‌های حائز اهمیت در سایر کشور­ها می‌باشد. در واقع، یکی از دلایل اهمیت چنین مطالعه­ای وجود پروتئین سطحی به نام تاجی (S) است که تاکنون متحمل بیشترین جهش­ها شده است. این پروتئین به‌عنوان هدف اصلی توسط شرکت­های بزرگ واکسن و داروسازی به‌کار گرفته شده است. در این مقاله با توجه به اهمیت و نقش پروتئین تاجی، سعی شده است جهش­ها، پیدایش گونه­های جدید و پیامدهای احتمالی ناشی از ظهور آنها در حیطه ساخت و طراحی دارو و واکسن مورد بحث و بررسی قرار گیرد. همچنین در این مطالعه، برنامه‌های رایج واکسن کووید-19 (برمبنای mRNA، ویروس غیرفعال، زیرواحد پروتئینی، وکتور ویروسی تکثیر شونده و ذرات شبیه ویروس) معرفی شده‌اند. همچنین، طبق استاندارد­های بین­المللی پایش هر کدام از روش­ها نیز در حال انجام است که بر اساس تحلیل­های دقیق علمی و مدل­های آماری بهتر می‌توان از پتانسیل­های این روش­ها در کاهش اثرات همه­گیری استفاده نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the nCoV-2019 Variants and Vaccines

نویسندگان [English]

  • Samira Abdikhani 1
  • Shokouh Rezaei 2
  • Yahya Sefidbakht 3
  • Sareh Arjmand 4
1 Protein Research Center, Shahid Beheshti University, Velenjak, Tehran, Iran.
2 Protein Research Center, Shahid Beheshti University, Velenjak, Tehran, Iran.
3 Protein Research Center, Shahid Beheshti University, Velenjak, Tehran, Iran.Faculty of New Technologies and Energy Engineering, Shahid Beheshti University, Velenjak, Tehran, Iran.
4 Protein Research Center, Shahid Beheshti University, Velenjak, Tehran, Iran.
چکیده [English]

According to reports about the appearance of various mutations in the novel coronavirus 2019 (nCoV-2019), the main purpose of this article is to introduce the types of mutations and important variants around the world. This study mainly focuses on the surface protein of the virus, called Spike (S) protein. S protein has undergone the most known mutation to date and has been used as the main target by vaccine platforms. Therefore, considering the importance and role of S protein, an attempt has been made to discuss mutations, the emergence of new variants, and their possible consequences in design and development of drugs and vaccines. Furthermore, developed nCov-19 vaccine platforms (based on mRNA, inactivated virus, protein subunit, replicating viral vector, and virus-like particles) being introduced. Also, according to international standards, monitoring of each method is being performed, which based on accurate scientific analysis and better statistical models, the potentials of these methods can be used to reduce the effects of the epidemic.

کلیدواژه‌ها [English]

  • nCoV-2019
  • Spike protein
  • Mutation
  • Vaccine
[1]. Poltronieri P, Sun B, Mallardo M. (2015). RNA viruses: RNA roles in pathogenesis, coreplication and viral load. Current genomics. 16(5), 327-35.
[2]. Sanjuán R, Domingo-Calap P. (2016). Mechanisms of viral mutation. Cellular and molecular life sciences. 73(23), 4433-48.
[3]. Steinhauer DA, Domingo E, Holland JJ. (1992). Lack of evidence for proofreading mechanisms associated with an RNA virus polymerase. Gene. 122(2), 281-8. 
[4]. Hong YB, Choi YW, Jung GH. (2004). Increased DNA polymerase fidelity of the Lamivudine resistant variants of human hepatitis B virus DNA polymerase. BMB Reports. 37(2), 167-76.
[5]. van Dorp L, Acman M, Richard D, Shaw LP, Ford CE, Ormond L, Owen CJ, Pang J, Tan CC, Boshier FA, Ortiz AT. (2020). Emergence of genomic diversity and recurrent mutations in SARS-CoV-2. Infection, Genetics and Evolution. 83, 104351.
[6]. Hoffmann M, Arora P, Groß R, Seidel A, Hörnich B, Hahn A, Krüger N, Graichen L, Hofmann-Winkler H, Kempf A, Winkler MS. (2021). SARS-CoV-2 variants B. 1.351 and B. 1.1. 248: Escape from therapeutic antibodies and antibodies induced by infection and vaccination. BioRxiv. 
[7]. Huang Y, Yang C, Xu XF, Xu W, Liu SW. (2020). Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica. 41(9), 1141-9.
[8]. Coutinho RM, Marquitti FM, Ferreira LS, Borges ME, da Silva RL, Canton O, Portella TP, Lyra SP, Franco C, Plucinski MM, Lessa FC. (2021). Model-based estimation of transmissibility and reinfection of SARS-CoV-2 P. 1 variant. medRxiv. 
[9]. Volz E, Mishra S, Chand M, Barrett JC, Johnson R, Geidelberg L, Hinsley WR, Laydon DJ, Dabrera G, O’Toole Á, Amato R. (2021). Transmission of SARS-CoV-2 Lineage B. 1.1. 7 in England: Insights from linking epidemiological and genetic data. medRxiv.
[10]. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Pérez Marc G, Moreira ED, Zerbini C, Bailey R. (2020). Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. New England Journal of Medicine. 383(27), 2603-15.
[11]. Mummed Y. (2020). Molecular targets for COVID-19 drug development: Enlightening Nigerians about the pandemic and future treatment. Biosafety and Health. 
[12]. Sanjuán R, Nebot MR, Chirico N, Mansky LM, Belshaw R. (2010). Viral mutation rates. Journal of virology. 84(19), 9733-48.
[13]. Peck KM, Lauring AS. (2018). Complexities of viral mutation rates. Journal of virology. 92(14).
[14]. Baranovich T, Wong SS, Armstrong J, Marjuki H, Webby RJ, Webster RG, Govorkova EA. (2013). T-705 (favipiravir) induces lethal mutagenesis in influenza A H1N1 viruses in vitro. Journal of virology. 87(7), 3741-51.
[15]. Carrasco-Hernandez R, Jácome R, López Vidal Y, Ponce de León S. (2017). Are RNA viruses candidate agents for the next global pandemic? A review. ILAR journal. 58(3), 343-58.
[16]. Matyášek R, Kovařík A. (2020). Mutation patterns of human SARS-CoV-2 and bat RaTG13 coronavirus genomes are strongly biased towards C> U transitions, indicating rapid evolution in their hosts. Genes. 11(7), 761.
[17]. Loewe, L. (2008). Genetic mutation. Nature Education. 1(1), 113.
[18]. Cortey M, Li Y, Diaz I, Clilverd H, Darwich L, Mateu E. (2020). SARS-CoV-2 amino acid substitutions widely spread in the human population are mainly located in highly conserved segments of the structural proteins. bioRxiv.
[19]. Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, Lu L, Jiang S, Yang Z, Wu Y, Ying T. (2020). Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerging microbes & infections. 9(1), 382-5.
] 20[. رضائی، شکوه، قاسملو، عبدالرحمن، سفیدبخت، یحیی،(1399)، ویروس کرونای جدید 2019 :منشأ و مکانیسم بیماریزایی، نشریه نشاء علم، سال دهم، شماره دوم، خرداد ماه 9، صفحات 130-137.
[21]. Torjesen I. (2021). Covid-19 will become endemic but with decreased potency over time, scientists believe. BMJ: British Medical Journal (Online). 372.
[22]. Leung K, Shum MH, Leung GM, Lam TT, Wu JT. (2021). Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Eurosurveillance. 26(1), 2002106.
[23]. Claro IM, da Silva Sales FC, Ramundo MS, Candido DS, Silva CA, de Jesus JG, Manuli ER, de Oliveira CM, Scarpelli L, Campana G, Pybus OG. (2021). Local Transmission of SARS-CoV-2 Lineage B. 1.1. 7, Brazil, December 2020. Emerging infectious diseases. 27(3), 970.
[24]. Galloway SE, Paul P, MacCannell DR, Johansson MA, Brooks JT, MacNeil A, Slayton RB, Tong S, Silk BJ, Armstrong GL, Biggerstaff M. (2021). Emergence of SARS-CoV-2 b. 1.1. 7 lineage—united states, december 29, 2020–january 12, 2021. Morbidity and Mortality Weekly Report. 70(3), 95.
[25]. Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD, Pearson CA, Russell TW, Tully DC, Washburne AD, Wenseleers T. (2021). Estimated transmissibility and impact of SARS-CoV-2 lineage B. 1.1. 7 in England. Science. 372(6538).
[26]. Kemp S, Harvey W, Datir R, Collier D, Ferreira I, Carabelii A, Robertson DL, Gupta RK. (2020). Recurrent emergence and transmission of a SARS-CoV-2 Spike deletion ΔH69/V70. bioRxiv. 
[27]. Zhao S, Lou J, Cao L, Zheng H, Chong MK, Chen Z, Chan RW, Zee BC, Chan PK, Wang MH. (2021).Quantifying the transmission advantage associated with N501Y substitution of SARS-CoV-2 in the UK: an early data-driven analysis. Journal of travel medicine. 28(2).
[28]. Zhou D, Dejnirattisai W, Supasa P, Liu C, Mentzer AJ, Ginn HM, Zhao Y, Duyvesteyn HM, Tuekprakhon A, Nutalai R, Wang B. (2021). Evidence of escape of SARS-CoV-2 variant B. 1.351 from natural and vaccine-induced sera. Cell. 
[29]. Maggi F, Novazzi F, Genoni A, Baj A, Spezia PG, Focosi D, Zago C, Colombo A, Cassani G, Pasciuta R, Tamborini A. (2021). Imported SARS-CoV-2 Variant P. 1 in Traveler Returning from Brazil to Italy. Emerging infectious diseases. 27(4), 1249.
[30]. Hoffmann M, Arora P, Groß R, Seidel A, Hörnich BF, Hahn AS, Krüger N, Graichen L, Hofmann-Winkler H, Kempf A, Winkler MS. (2021). SARS-CoV-2 variants B. 1.351 and P. 1 escape from neutralizing antibodies. Cell. 
[31]. McCallum M, Bassi J, De Marco A, Chen A, Walls AC, Di Iulio J, Tortorici MA, Navarro MJ, Silacci-Fregni C, Saliba C, Agostini M. (2021). SARS-CoV-2 immune evasion by variant B. 1.427/B. 1.429. bioRxiv.
[32]. Plante JA, Liu Y, Liu J, Xia H, Johnson BA, Lokugamage KG, Zhang X, Muruato AE, Zou J, Fontes-Garfias CR, Mirchandani D. (2020). Spike mutation D614G alters SARS-CoV-2 fitness. Nature.1-6.
[33]. Zhang L, Jackson CB, Mou H, Ojha A, Rangarajan ES, Izard T, Farzan M, Choe H. (2020). The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. BioRxiv. 
[34]. Infectious Diseases Society of America (IDSA). (2011).Combating antimicrobial resistance: policy recommendations to save lives. Clinical Infectious Diseases. 52(suppl_5), S397-428.
[35]. Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, Bartlett JG, Edwards Jr J, Infectious Diseases Society of America. (2008).The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clinical infectious diseases. 46(2), 155-64.
[36]. Weber DJ, Rutala WA, Fischer WA, Kanamori H, Sickbert-Bennett EE. (2016). Emerging infectious diseases: Focus on infection control issues for novel coronaviruses (Severe Acute Respiratory Syndrome-CoV and Middle East Respiratory Syndrome-CoV), hemorrhagic fever viruses (Lassa and Ebola), and highly pathogenic avian influenza viruses, A (H5N1) and A (H7N9). American journal of infection control. 44(5), e91-100.
[37]. Simon-Loriere E, Holmes EC. (2011). Why do RNA viruses recombine?. Nature Reviews Microbiology. 9(8), 617-26.
[38]. Greenwood B. (2014). The contribution of vaccination to global health: past, present and future. Philosophical Transactions of the Royal Society B: Biological Sciences. 369(1645), 20130433.
[39]. Heaton PM. (2020). Challenges of Developing Novel Vaccines with Particular Global Health Importance. Frontiers in Immunology. 1–13.
[40]. Eyal N, Halkitis PN. (2020). AIDS activism and coronavirus vaccine challenge trials. AIDS and Behavior. 24(12), 3302-5.
[41]. Chen W. (2020). Promise and challenges in the development of COVID-19 vaccines. Human Vaccines & Immunotherapeutics. 1-5.
[42]. Le TT, Andreadakis Z, Kumar A, Román RG, Tollefsen S, Saville M, Mayhew S. (2020). The COVID-19 vaccine development landscape. Nat Rev Drug Discov. 19(5), 305-6.
[43]. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Pérez Marc G, Moreira ED, Zerbini C, Bailey R. (2020). Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. New England Journal of Medicine. 383(27), 2603-15.
[44]. Kadali RA, Janagama R, Peruru S, Malayala SV. (2021). Side effects of BNT162b2 mRNA COVID-19 vaccine: A randomized, cross-sectional study with detailed self-reported symptoms from healthcare workers. International Journal of Infectious Diseases. 106, 376-381.
[45]. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, Diemert D, Spector SA, Rouphael N, Creech CB, McGettigan J. (2021). Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. New England Journal of Medicine. 384(5), 403-16.
[46]. Kyriakidis NC, López-Cortés A, González EV, Grimaldos AB, Prado EO. (2021). SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates. npj Vaccines. 6(1), 1-7.
[47]. Mega ER. (2021). Can Cuba beat COVID with its homegrown vaccines?. Nature. https://doi.org/10.1038/d41586-021-01126-4 
[48]. Baraniuk C. (2021). Covid-19: What do we know about Sputnik V and other Russian vaccines?. Bmj, 372. https://doi.org/10.1136/bmj.n743
[49]. Pagotto V, Ferloni A, Soriano MM, Diaz M, Braguinsky N, Asprea V, Vidal GG, Silveira MG, Zingoni P, Aliperti V, Michelangelo H. (2021). Active surveillance of the SPUTNIK V vaccine in health workers. medRxiv. https://doi.org/10.1101/2021.02.03.21251071 
[50]. Richardson JS, Dekker JD, Croyle MA, Kobinger GP. (2010). Recent advances in Ebolavirus vaccine development. Human vaccines. 439-49.
[51]. Regules JA, Beigel JH, Paolino KM, Voell J, Castellano AR, Hu Z, Muñoz P, Moon JE, Ruck RC, Bennett JW, Twomey PS. (2017). A recombinant vesicular stomatitis virus Ebola vaccine. New England Journal of Medicine. 376(4), 330-41.
[52]. Baldo A, van den Akker E, E Bergmans H, Lim F, Pauwels K. (2013). General considerations on the biosafety of virus-derived vectors used in gene therapy and vaccination. Current gene therapy. 13(6), 385-94.
[53]. Tseng CT, Sbrana E, Iwata-Yoshikawa N, Newman PC, Garron T, Atmar RL, Peters CJ, Couch RB. (2012). Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PloS one. 7(4), e35421.