معرفی الگوهای تقلیدی و مکانیسم‌های دفاعی در جانوران: درس هایی از طبیعت

نوع مقاله : مقاله ترویجی

نویسندگان

گروه شیلات، دانشکده منابع طبیعی، دانشگاه گیلان، صومعه‌سرا

چکیده

جهت حفظ بقا، جانوران باید از خود در برابر شکارگران دفاع کنند. به همین دلیل، یک سری توانایی‌ها و سازگاری‌هایی در آن‌ها برای دفاع از خود تکامل یافته است. نشانه‌های ضد شکارگری، مانند تقلید و استتار، به جانوران برای جلوگیری از شکار شدن کمک می‌کند و در این مقاله مورد بحث قرار خواهد گرفت. گونه‌ها برای ارسال علامت‌های هشدار به شکارگران خود از رنگ‌آمیزی آپوسماتیک، تقلید مولری و تقلید باتسی استفاده می‌کنند. در اثر الگوهای تقلیدی و استراتژی‌های مرتبط، جانوران و فرزندانشان شانس بیشتری برای افزایش بقا و انتقال ژن‌های خود دارند. استتار کارآمد یکی از روش‌هایی است که برای جلوگیری از شناسایی شدن توسط شکارگران استفاده میشود و در بسیاری از گونه‌ها رایج است. درک بیشتر مکانیسم‌های مربوط به الگوهای تقلیدی و استتار در جانوران، پتانسیل توسعه بیشتر در علم و بسیاری از زمینه‌های تحقیقاتی را فراهم می کند. به عنوان مثال روش‌های استتار را می‌توان در صنایع نظامی به کار برد و استفاده کرد. به این ترتیب، «درس‌هایی از طبیعت» می‌تواند به توسعه روش‌های صلح‌آمیز و پیشگیرانه برای پدافند غیرعامل کمک کند.

کلیدواژه‌ها


عنوان مقاله [English]

An Introduction to Mimicry Patterns and Defense Mechanisms in Animals: Lessons From Nature

نویسندگان [English]

  • Saeed Shafiei Sabet
  • Anahita Alizadeh
Fisheries department, Faculty of natural resources, University of Guilan, Sowmwh Sara
چکیده [English]

To survive, animals must defend themselves against predators. For this reason, a series of abilities and adaptations have evolved to enable animals to defend themselves. Anti-predatory signals, such as mimicry and camouflage, facilitate animals to avoid predation and are discussed in this article. Species adopt aposematic colouration, Mullerian mimicry and Batesian mimicry to send warning signals to their predators. As a result of mimetic patterns and related strategies, animals and their offspring have a better chance of enhancing their survival and passing on their genes. Effective camouflage is one of the methods used to avoid detection from predation and is common in many species. A greater understanding of mechanisms related to mimetic patterns and camouflage in animals has the potential to further develop the science of biological inspiration. For example, camouflage methods can be applied and used in military industries. As such, "lessons from nature" can help develop peaceful and preventive methods for passive defense.

کلیدواژه‌ها [English]

  • Predator
  • Bioinspiration
  • Camouflage
  • Antipredator
  • Ecology
  • Military Industries
[1]. Haddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., Gonzalez, A., Holt, R. D., ... & Townshend, J. R. (2015). Habitat fragmentation and its lasting impact on Earth’s ecosystems, Science advances, Vol 1, No. 2, e1500052.
[2]. Francis, C. D., Ortega, C. P., & Cruz, A. (2009). Noise pollution changes avian communities and species interactions, Current biology, Vol. 19, No. 16. PP. 1415-1419.
[3]. Shannon, G., McKenna, M. F., Angeloni, L. M., Crooks, K. R., Fristrup, K. M., Brown, E., ... & Wittemyer, G. (2016). A synthesis of two decades of research documenting the effects of noise on wildlife, Biological Reviews, Vol. 91, No. 4. PP. 982-1005.
[4]. Slabbekoorn, H., Bouton, N., van Opzeeland, I., Coers, A., ten Cate, C., & Popper, A. N. (2010). A noisy spring: the impact of globally rising underwater sound levels on fish, Trends in ecology & evolution, Vol. 25, No. 7. PP. 419-427.
[۵]. زینب موسوی موحدی،"فنآوری های جدید برمبنای دانش زیست الگو و الهام زیستی" فصلنامه نشاء علم، مجلد 7، شماره 1، صفحات 61-53، سال 1395 
[6]. Blickley 1, J. L., & Patricelli 2, G. L. (2010). Impacts of anthropogenic noise on wildlife: research priorities for the development of standards and mitigation, Journal of International Wildlife Law & Policy, Vol .13, No. 4. PP. 274-292.
[7]. علی‌اکبر موسوی موحدی " زیست الگو: همگرایی در علم و حکمت"فصلنامه نشاء علم، مجلد 4، شماره 1، صفحات 9-6، سال 1392. 
[8].Sejnowski, T. J. (2018). Living machines: a دستینه of research in biomimetic and biohybrid systems. Oxford University Press.
[9]. Benyus, J. M. (1997).Biomimicry,William Morrow New York.
[10]. Kumar, C. S. (Ed.). (2010). Biomimetic and bioinspired nanomaterials. John Wiley & Sons.
[11]. Bar-Cohen, Y. (2005). Biomimetics: biologically inspired technologies. CRC press.
[12]. Mukherjee, A. (Ed.). (2010). Biomimetics: Learning from Nature. BoD–Books on Demand.
[13]. Han, Z., Mu, Z., Yin, W., Li, W., Niu, S., Zhang, J., & Ren, L. (2016). Biomimetic multifunctional surfaces inspired from animals. Advances in Colloid and Interface Science, Vol. 234. PP. 27-50.
[14]. Tong, J., Zhang, Z., Ma, Y., Chen, D., Jia, B., & Menon, C. (2012). Abrasive wear of embossed surfaces with convex domes. Wear, 274, 196-202.
[15]. Tian, X., Han, Z., Li, X., Pu, Z., & Ren, L. (2010). Biological coupling anti-wear properties of three typical molluscan shells—Scapharca subcrenata, Rapana venosa and Acanthochiton rubrolineatus. Science China Technological Sciences, 53, 2905-2913.
[16]. Gao, X., & Jiang, L. (2004). Water-repellent legs of water striders. nature, 432(7013), 36-36.
[17]. Byun, D., Hong, J., Ko, J. H., Lee, Y. J., مانَک, H. C., Byun, B. K., & Lukes, J. R. (2009). Wetting characteristics of insect wing surfaces. Journal of Bionic Engineering, 6(1), 63-70.
[18]. Bhushan, B., & Sayer, R. A. (2007). Surface characterization and friction of a bio-inspired reversible adhesive tape. Microsystem Technologies, 13, 71-78.
[19]. Bhushan, Bharat & Sayer, R.A. (2007). Gecko Feet: Natural attachment systems for smart adhesion. Applied Scanning Probe Methods VII. 7. 41-76. 
[20]. Ren, L. Q., Tong, J., Li, J. Q., & Chen, B. C. (2001). Soil adhesion and biomimetics of soil-engaging components: a review. Journal of Agricultural Engineering Research, 79(3), 239-264.
[21]. Bechert, D. W., Bruse, M., & Hage, W. (2000). Experiments with three-dimensional riblets as an idealized model of shark skin. Experiments in fluids, 28(5), 403-412.
[22]. Bai, X., Zhang, X., & Yuan, C. (2016). Numerical analysis of drag reduction performance of different shaped riblet surfaces. Marine Technology Society Journal, 50(1), 62-72.
[23]. Liu, M., Wang, S., Wei, Z., Song, Y., & Jiang, L. (2009). Bioinspired design of a superoleophobic and low adhesive water/solid interface. Advanced Materials, 21(6), 665-669.
[24]. Liu, K., & Jiang, L. (2011). Bio-inspired design of multiscale structures for function integration. Nano Today, 6(2), 155-175.
[25]. Fang, Y., Sun, G., Cong, Q., Chen, G. H., & Ren, L. Q. (2008). Effects of methanol on wettability of the non-smooth surface on butterfly wing. Journal of Bionic Engineering, 5(2), 127-133.
[26]. Han, Z., Niu, S., Shang, C., Liu, Z., & Ren, L. (2012). Light trapping structures in wing scales of butterfly Trogonoptera brookiana. Nanoscale, 4(9), 2879-2883.
[27]. Genzer, J., & Efimenko, K. (2006). Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling, 22(5), 339-360.
[28]. Gao, X., Yan, X., Yao, X., Xu, L., Zhang, K., Zhang, J., ... & Jiang, L. (2007). The dry style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Advanced Materials, 19(17), 2213-2217.
[29]. Chen, K., Liu, Q., Liao, G., Yang, Y., Ren, L., Yang, H., & Chen, X. (2012). The sound suppression characteristics of wing feather of owl (Bubo bubo). Journal of Bionic Engineering, 9(2), 192-199.
[30]. Parker, A. R., & Lawrence, C. R. (2001). Water capture by a desert beetle. Nature, 414(6859), 33-34.
[31]. Zhai, L., Berg, M. C., Cebeci, F. C., Kim, Y., Milwid, J. M., Rubner, M. F., & Cohen, R. E. (2006). Patterned superhydrophobic surfaces: toward a synthetic mimic of the Namib Desert beetle. Nano Letters, 6(6), 1213-1217.
[32]. Aminifard, M., Shafiei sabet, S. (2022). The Importance of Behavioural Studies and Bioacoustics of Aquatic Animals, Science Cultivation, Vol. 12, No. 2. PP. 191-197.
[33]. Grant, B. S., Owen, D. F., & Clarke, C. A. (1996). Parallel rise and fall of melanic peppered moths in America and Britain, Journal of Heredity, Vol. 87, No. 5. PP. 351-357.
[34]. Kettlewell, H. B. D. (1955). Selection experiments on industrial melanism in the Lepidoptera. Heredity, Vol. 9. No.3. PP. 323-342.
[35]. Coyne, J. A. (1998). Not black and white. https://www.nature.com/articles/23856 
[36]. Grant, B. S. (1999). Fine tuning the peppered moth paradigm. https://www.jstor.org/stable/2640740 
[37]. Han, Z., Wu, L., Qiu, Z., & Ren, L. (2009). Microstructure and structural color in wing scales of butterfly Thaumantis diores. Chinese Science Bulletin,Vol. 54, NO. 4. PP. 535-540.
[38]. Gorb, S. N. (2011). Insect-inspired technologies: insects as a source for biomimetics. Insect Biotechnology, 241-264.
[39]. Stevens, M. (2005). The role of eyespots as anti-predator mechanisms, principally demonstrated in the Lepidoptera. Biological Reviews, 80(4), 573-588.
[40]. Hanlon, r. t., Forsythe, j. w., & Joneschild, d. e. (1999). Crypsis, conspicuousness, mimicry and polyphenism as antipredator defences of foraging octopuses on Indo-Pacific coral reefs, with a method of quantifying crypsis from video tapes. Biological Journal of the Linnean Society, 66(1), 1-22.
[41]. Lönnstedt, O. M., McCormick, M. I., & Chivers, D. P. (2013). Predator-induced changes in the growth of eyes and false eyespots. Scientific Reports, 3(1), 2259.
[42]. Stevens, M. (2016). Cheats and deceits: how animals and plants exploit and mislead. Oxford University Press.
[43]. Brower, L. P. (1984). Chemical defence in butterflies. In symposia of the royal entomological society of London.
[44]. van Zandt Brower, J. (1958). Experimental studies of mimicry in some North American butterflies: Part I. The monarch, Danaus plexippus, and viceroy, Limenitis archippus archippus. Evolution, PP. 32-47.
[45]. Brower, J. V. Z. (1958). Experimental studies of mimicry in some North American butterflies: Part II. Battus philenor and Papilio troilus, P. polyxenes and P. glaucus. Evolution, PP. 123-136.
[46]. Breed, M. D., & Moore, J. (2016). Animal Behavior, 2nd ed.; Academic Press: Cambridge, MA, USA, PP. 326-355.
[47]. Mclver, J. D., & Stonedahl, G. (1993). Myrmecomorphy: morphological and behavioral mimicry of ants. Annual Review of Entomology, Vol. 38, No. 1. PP. 351-377.
[48]. Komarek, S. (1998). Mimicry, aposematism and related phenomena in animals and plants. Bibliography 1800-1990. Vesmir.
[49]. Santos, J. C., Coloma, L. A., & Cannatella, D. C. (2003). Multiple, recurring origins of aposematism and diet specialization in poison frogs. Proceedings of the National Academy of Sciences, 100(22), 12792-12797.
[50]. Maan, M. E., & Cummings, M. E. (2012). Poison frog colors are honest signals of toxicity, particularly for bird predators. The American Naturalist, 179(1), E1-E14.
[51]. Ruxton, G. D., Allen, W. L., Sherratt, T. N., & Speed, M. P. (2019). Avoiding attack: the evolutionary ecology of crypsis, aposematism, and mimicry. Oxford university press.