پزشکی فردی: تحولی جدید در مراقبت از بیمار به سمت پیش بینی و پیشگیری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مرکز تحقیقات بیوشیمی و بیوفیزیک، دانشگاه تهران، تهران، ایران

2 شرکت صنایع شیمیایی دارویی ارسطو، فرهنگستان علوم جمهوری اسلامی ایران، شاخه شیمی.

چکیده

پزشکی فردی، بر طراحی درمان های پزشکی بر اساس ویژگی های فردی از هر بیمار متمرکز است. البته این به معنای طراحی و ساخت داروی خاص و یا دستگاه های پزشکی منحصر به یک فرد نیست، بلکه دسته بندی افراد به زیر جمعیت هایی است که در حساسیت به یک بیماری خاص و یا پاسخ به درمان خاص متفاوتند. تفاوت های افراد بر پایه داده های بالینی و علوم او میکس توسط دانش بیوانفورماتیک شناسایی شده و امکان تشخیص زودهنگام و غربالگری افراد دارای پتانسیل ابتلا به بیماری خاص فراهم می شود. برای دستیابی به اثر مشابه درمانی یک نوع دارو، میزان یا دوز (کمتر و یا بیشتر از آن ) دارو نیز برای بیماران بر اساس ویژگی های ژنتیکی و ژنومی تعیین می گردد. حتی گاهی یک دارو در برخی اثر درمانی ندارد. این یک روش موثر برای کاهش هزینه آزمایش های بالینی و عوارض جانبی و مراقبت های بالینی در مدت زمان کمتر می باشد و درمان را بر اساس محتوای ژنتیکی یک بیمار و یا تجزیه و تحلیل های زیست مولکولی انتخاب می نمایند. هدف پزشکی فردی این است که شرایط را برای تجویز داروهای موثرتر، ایمن تر و بهتر فراهم آورده و عوارض جانبی آنها را به حداقل رسانند.

کلیدواژه‌ها


عنوان مقاله [English]

Personalized Medicine: Toward Disease Prediction, Prevention and New Treatment Protocols

نویسندگان [English]

  • Leila Mahrokh 1
  • Khashayar Karimian 2
  • Ali Akbar Moosavi-Movahedi 1
1 Institute of Biochemistry & Biophysics, University of Tehran, Tehran, Iran.
2 Arasto Pharmaceutical Chemicals Company, Iran Academy of Science, Chemistry Branch.
چکیده [English]

Personalized medicine is the design of a medical treatment protocol based on individual characteristics of each patient. However, it does not involve design and production of a new drugs or medical devices for each individual. Rather, it targets categories of subpopulations that demonstrate different responses to a particular disease or a drug. The differences among individuals are based on clinical data, omics sciences and bioinformatics, which make possible early detection of a disease by screening populations and identifying the high-risk individuals for a specific disease and designing an individual-based treatment protocol. It is well-established that some drugs have no therapeutic benefit in certain populations because of their genetic makeup. Using the genetic and genomic characteristics, personalized medicine provides the best drug selection and dosing protocol for individual patients to achieve the desired treatment outcome. This is an effective way to reduce the time and the cost of clinical trials, side effects and to provide clinical care and treatment based on a patient’s genetic content and molecular biology analysis. Therefore personalized medicine provides more effective, safer and higher quality of medical treatment with minimum side effects to the individual patient.

کلیدواژه‌ها [English]

  • Personalized medicine
  • Screening
  • Polymorphism
  • Side effects
[1]. Bauer, C., Stec, K., Glintschert, A., Gruden, K., Schichor, C., Or-Guil, M., Selbig, J., Schuchhardt, J. (2015). BioMiner: Paving the Way for Personalized Medicine. Cancer Inform. Vol.14, PP. 55-63.
[2].Agrawal, S. and Khan, F. (2007). Human genetic variation and personalized medicine. Indian J Physiol Pharmacol, Vol.51, No.1. PP. 7-28.
[3].Strachan, T. (2011). Human molecular genetics. 4th Ed. Garland Science Publisher, New York, USA, pp. 605- 608.
[4].Chen, R., Snyder, M. (2012). Systems biology: personalized medicine for the future? Current opinion in pharmacology, Vol. 12, No.5. PP. 623-628.
[5].Silverman, R.B., (1992. (The Organic Chemistry of Drug Design and Drug Action, Academic Press, New York, USA, pp. 277-351.
[6].Horai, Y., Nakano, M., Ishizaki, T., Zhou, H. H., Zhou, B. J., Liao, C. L., Zhang, L. M. (1989). Metoprolol and mephenytoin oxidation polymorphisms in Far Eastern Oriental subjects: Japanese versus mainland Chinese. Clin Pharmacol Ther, Vol. 46, No.2. PP. 198-207.
[7].Jurima, M., Inaba, T., Kadar, D., Kalow, W. (1985). Genetic polymorphism of mephenytoin p(4’)-hydroxylation: difference between Orientals and Caucasians. Br J Clin Pharmacol, Vol.19, PP. 483-487.
[8].Ginsburg, G. S., Willard, H. F., (2009). Genomic and personalized medicine: foundations and applications. Transl Res. Vol. 154, PP. 277–287.
[9].Martin-Sanchez, F., Iakovidis, I., Norager, S., Maojo, V., De Groen, P., Van der Lei, J., Jones, T., Abraham- Fuchs, K., Apweiler, R., Babic, A., Baud, R., Breton, V., Cinquin, P., Doupi, P., Dugas, M., Eils, R., Engelbrecht, R., Ghazal, P., Jehenson, P., Kulikowski, C., Lampe, K., De Moor, G., Orphanoudakis, S., Rossing, N., Sarachan, B., Sousa, A., Spekowius, G., Thireos, G., Zahlmann, G., Zvárová, J., Hermosilla, I., Vicente, F. J., (2004). Synergy between medical informatics and bioinformatics: facilitating genomic medicine for future health care. Journal of Biomedical Informatics, Vol.37, PP. 30-42.
[10].Lopes, P., Arrais, J., Oliveira J. L. (2012). Bioinformatics for Personalized Medicine: A Holistic Approach for Integrating Genomic Variation Information, Springer, Berlin, Germany, PP. 42-49.
[11]. Ginsburg, G. S., Donahue, M., (2005). Prospects for personalized cardiovascular medicine: the impact of genomics. J Am Coll Cardiology, Vol.46, No.9. PP. 1615-1627.
[12]. Ziegler, A., Koch, A., Krockenberger, K., Grobhennig, A. (2012). Personalized medicine using DNA biomarkers: a review. Human Genetics, Vol.131, No.10. PP. 1627-1638.
[13].Ganesalingam, J., Bowser, R. (2010). The application of biomarkers in clinical trials for motor neuron disease. Biomark Med., Vol.4, No.2. PP. 281–297.
[14].Diamandis, E.P. (2012). Biomarker validation is still the bottleneck in biomarker research. Journal of Internal Medicine, Vol.272, No.6. PP. 620-631.
[15].Lohmann, S., Lehmann, L., Tabiti Roche, K. (2000). Fast and Flexible Single Nucleotide Polymorphism (SNP) Detection with the Light Cycler System. Biochemica, Vol.4, PP. 23-28.
[16].Gupta, R., Kim, J.P., Spiegel, J., Ferguson, S.M. (2004). Developing products for personalized medicine: NIH Research Tools Policy applications. Per Med, Vol.1, No.1. PP. 115-124.
[17].Luzi, L. (2012). Cellular physiology and metabolism of physical exercise, Springer, Verlag, Italia, PP. 548-573.
[18].Marez, D., Legrand, M., Sabbagh, N., Guidice, J. L., Spire, C., Lafitte, J. J. (1997). Polymorphism of the cytochrome P450 CYP2D6 gene in a European population: characterization of 48 mutations and 53 alleles, their frequencies and evolution. Pharmacogenetics, Vol.7, No.3. PP. 193-202.
[19].Klonoff, D. C. (2009). The personalized medicine for diabetes meeting summary report. Journal of Diabetes Sci Technol, Vol.3, No.4. PP. 677-679.
[20].International HapMap, C. (2007). A second generation human haplotype map of over 3.1 million SNPs. Nature, Vol.449, No.7164. PP. 851-861.
[21].Jain, K. K. (2004). Role of pharmacoproteomics in the development of personalized medicine. Pharmacogenomics, Vol.5, No.3. PP. 331-336.
[22]. Bencharit S. (2012). Progresses and challenges of omics studies and their impacts in personalized medicine. J Pharmacogenomics Pharmacoproteomics, Vol.3, No.1. PP. 115-124.
[23].Xie, H., Frueh, F.W. (2005). Pharmacogenomics steps toward personalized medicine. Personalized Medicine, Vol.2, No.4. PP. 325-337.
[24].Gieger, C., Geistlinger, L., Altmaier, E., Hrabé de Angelis, M., Kronenberg, F., Meitinger, T., Mewes, H. W., Wichmann, H. E., Weinberger, K. M., Adamski, J., Illig, T., Suhre, K. (2008). Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet, Vol.4, No.11. PP. e1000282.
[25]. Monte, A. A., Brocker, C., Nebert, D. W., Gonzalez, F. J., Thompson, D. C., Vasiliou, V. (2014). Improved drug therapy: triangulating phenomics with genomics and metabolomics. Hum Genomics, Vol.8, No.1. PP. 16-25.
[26].Ginsburg, G. S., Willard, H. F. (2009). Genomic and personalized medicine: foundations and applications. Transl res., Vol.154, No.6. PP. 277-287.
[27].Ginsburg, G. S., McCarthy, J. J. (2001). Personalized medicine: revolutionizing drug discovery and patient care. Trends in Biotechnology, Vol.19, No.12. PP. 491-496.
[28].Abrahams, E., Silver, M. (2009). The case for personalized medicine. J of Diabetes Sci Technol, Vol.3, No.4. PP. 680-684.
[29].Piccart-Gebhart, M. J., Piccart-Gebhart, M. J., Procter, M., Leyland-Jones, B., Goldhirsch, A., Untch, M., Smith, I., Gianni, L., Baselga, J., Bell, R., Jackisch, C., Cameron, D., Dowsett, M., Barrios, C. H., Steger, G., Huang, C. S., Andersson, M., Inbar, M., Lichinitser, M., Lang, I., Nitz, U., Iwata, H., Thomssen, C., Lohrisch, C., Suter, T. M., Ruschoff, J., Suto, T., Greatorex, V., Ward, C., Straehle, C., McFadden, E., Dolci, M. S., Gelber, R. D., Herceptin Adjuvant Trial Study Team, (2005). Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med, Vol.353, No.16. PP. 1659-1672.
[30].Yamamoto, F., Cid, E., Yamamoto, M., Blancher, A. (2012). ABO research in the modern era of genomics. Transfus Med Rev, Vol.26, No. 2. PP. 103-118.
[31].Liumbruno, G. M., Franchini M. (2013). Beyond immunohaematology: the role of the ABO blood group in human diseases. Blood Transfus, Vol.11, No.4. PP. 491-499.
[32].He, M., Wolpin, B., Rexrode, K., Manson, J. E., Rimm, E., Hu, F. B., Qi, L. (2012). ABO blood group and risk of coronary heart disease in two prospective cohort studies. Arterioscler Thromb Vasc Biol, Vol.32, No.9. PP. 2314-2320.
[33].Franchini, M., Mannucci, P. M. (2014). ABO blood group and thrombotic vascular disease. Thromb Haemost, Vol.112, No.6. PP. 1103-1109.
[34].Iodice, S., Maisonneuve, P., Botteri, E., Sandri, M. T., Lowenfels, A.B. (2010). ABO blood group and cancer. Eur J Cancer, Vol.46, No.18. PP. 3345-3350.
[35].Liumbruno, G. M., Franchini, M. (2014). Hemostasis, cancer, and ABO blood group: the most recent evidence of association. J Thromb Thrombolysis, Vol.38, No.2. PP. 160-166.
[36].Etemadi, A., Kamangar, F., Islami, F., Poustchi, H., Pourshams, A., Brennan, P., Boffetta, P., Malekzadeh, R., Dawsey, S. M., Abnet, C. C., Emadi, A. (2015). Mortality and cancer in relation to ABO blood group phenotypes in the Golestan Cohort Study. BMC Med, Vol.13, No.5. PP. 8-20.
[37].Au, N., Rettie, A. E. (2008). Pharmacogenomics of 4-hydroxycoumarin anticoagulants. Drug Metab Rev, Vol.40, No.2. PP. 355-75.
[38].Rieder, M. J., Reiner, A. P., Gage, B. F. (2005). Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med, Vol.352, No.22. PP. 2285-93.
[39].Singh, O., Sandanaraj, E., Subramanian, K., Lee, L. H., Chowbay, B. (2011). Influence of CYP4F2 rs2108622 (V433M) on warfarin dose requirement in Asian patients. Drug Metab Pharmacokinet, Vol.26, No.2. PP. 130-136.
[40].Caldwell, M. D., Awad, T., Johnson, J. A. (2008). CYP4F2 genetic variant alters required warfarin dose. Blood, Vol.111, No.8. PP. 4106-4112.
[41].Takeuchi, F., McGinnis, R., Bourgeois, S. (2009). A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet, Vol.5, No.3. PP. e1000433.
[42].Cooper, G. M., Johnson J. A., Langaee T. Y. (2008). A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose. Blood, Vol.112, No.4. PP. 1022-1027.
[43].Chapman, P. B., Hauschild, A., Robert, C., Haanen, J. B., Ascierto, P., Larkin, J., Hogg, D. (2011). Improved survival with vemurafenib in melanoma with BRAF V600E mutation. New England. Journal of Medicine, Vol.364, No.26. PP. 2507-2516.
[44].Ellard, S., Colclough, K. (2006). Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha (HNF1A) and 4 alpha (HNF4A) in maturity-onset diabetes of the young. Hum Mutat, Vol.27, No.9. PP. 854-869.
[45].Jia, W. (2013). Personalized medicine of type 2 diabetes. Front Med, Vol.7, No.1. PP. 1-10.
[46].McCarthy, M. I. (2010). Genomics, type 2 diabetes, and obesity. New England Journal of Medicine, Vol.363, No.24. PP. 2339-2350.
[47]. Zhou, M., Xia, L., Wang J. (2007). Metformin transport by a newly cloned proton-stimulated organic cation transporter (plasma membrane monoamine transporter) expressed in human intestine. Drug Metab Dispos, Vol.35, No.10. PP. 1956-1962.
[48]. Kimura, N., Masuda, S., Tanihara, Y. (2005). Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1. Drug Metab. Pharmacokinet, Vol.20, No.9. PP. 379–386.
[49]. Shu, Y., Sheardown, S. A., Brown, C. (2007). Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest, Vol.117, No.5. PP. 1422-1431.
[50]. Pearson, E. R., Pruhova, S., Tack, C. J., Johansen, A., Castleden, H. A., Lumb, P.J., Wierzbicki, A. S., Clark, P. M., Lebl, J., Pedersen, O., Ellard, S., Hansen, T., Hattersley, A. T. (2005). Molecular genetics and phenotypic characteristics of MODY caused by hepatocyte nuclear factor 4alpha mutations in a large European collection. Diabetologia, Vol.48, No.5. PP. 878-885.
[51].Shepherd, M., Pearson, E. R., Houghton, J., Salt, G., Ellard, S., Hattersley, A. T. (2003). No deterioration in glycemic control in HNF-1alpha maturity-onset diabetes of the young following transfer from long-term insulin to sulphonylureas. Diabetes Care, Vol.26, No.5. PP. 3191–3192.
[52]. Shepherd, M., Hattersley, A. T. (2004). I don’t feel like a diabetic any more: the impact of stopping insulin in patients with maturity onset diabetes of the young following genetic testing. Clin Med, Vol.4, No.8. PP. 144-147.
[53].Raciti, GA., Nigro, C., Longo, M. (2014). Personalized medicine and type 2 diabetes: lesson from epigenetics. Epigenomics, Vol.6, No.2. PP. 229-38.
[54].Manolopoulos, V. G., Ragia, G., Tavridou, A. (2011). Pharmacogenomics of oral antidiabetic medications: current data and pharmacoepigenomic perspective. Pharmacogenomics, Vol.12, No.8. PP. 1161–1191.
[55].Caporali, A., Meloni, M., Völlenkle, C. (2011). Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation, Vol.123, No.3. PP. 282–291.
[56].Lares, M. R., Rossi, J. J., Ouellet, D. L. (2010). RNAi and small interfering RNAs in human disease therapeutic applications. Trends Biotechnol, Vol.28, No.11. PP. 570–579.
[57].Qiu, C., Kivipelto, M., Strauss, E. (2009). Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin. Neurosci, Vol.11, PP. 111–128.
[58].Esteban-Santillan, C., Praditsuwan, R., Ueda, H., Geldmacher, D. S. (1998). Clock drawing test in very mild Alzheimer’s disease. J Am Geriatr Soc., Vol.46, No.10. PP. 1266-1269.
[59].Qin, W., Ho, L., Wang, J., Peskind E, Pasinetti GM, (2009). A novel Alzheimer’s disease biomarker with nonamyloidogenic alpha-secretase activity acts via selective promotion of ADAM-10. PLoS One, Vol.4, No.1. PP. e4183.
[60].Jonsson, T., Atwal, J. K., Steinberg, S., Snaedal, J., Jonsson, P. V., Bjornsson, S., Hoyte, K. (2012). A mutation in APP protects against Alzheimer/’s disease and age-related cognitive decline. Nature, Vol.488, No.7409. PP. 96-99.
[61].Jain, K. K. (2009). Textbook of personalized medicin, Springer, New York, USA, PP. 205-225.
[62].Jain, K.K. (2006). A critical review of the Royal Society’s report on personalized medicine. Drug Discov Today, Vol.11, No.13-14. PP. 573–575.
[63].Regierer, B., Zazzu, V., Sudbrak, R., Kühn, A., Lehrach, H. (2013). Future of medicine: models in predictive diagnostics and personalized medicine. Adv Biochem Eng Biotechnol, Vol.133, PP. 15-33.
[64].Baer-Dubowska, W., Majchrzak-Celińska, A., & Cichocki, M. (2011). Pharmocoepigenetics: a new approach to predicting individual drug responses and targeting new drugs. Pharmacological Reports, Vol.63, No.2. PP. 293-304.
[65].Gomez, A., Ingelman‐Sundberg, M. (2009). Pharmacoepigenetics: its role in interindividual differences in drug response. Clinical Pharmacology & Therapeutics, Vol.85, No.4. PP. 426-430.
[66].Souslova, T., Marple, T. C., Spiekerman, A. M., Mohammad, A. A. (2013). Personalized medicine in Alzheimer’s disease and depression. Contemporary clinical trials, Vol.36, No.2. PP. 616-623.
[67].Lesko, L. J. (2007). Personalized medicine: elusive dream or imminent reality? Clinical Pharmacology & Therapeutics, Vol.81, No.6. PP. 807-816.
[68].Gonzalez de Castro, D., Clarke, P. A., AlLazikani, B., Workman, P. (2013). Personalized cancer medicine: molecular diagnostics, predictive biomarkers, and drug resistance. Clinical Pharmacology & Therapeutics, Vol.93, No.3. PP. 252-259
[69]. ناصر پارسا ، فاطمه قمری و علی اکبر موسوی موحدی، "تبدیل تحقیقات علوم پایه به روش های درمانی: رقابتی علمی و جدید در سطح جهانی"، نشریه نشا علم، مجلد۳، شماره ۲، صفحات ۱۲۲-۱۲۷، سال ۱۳۹۲.