ارتباط بین تغییرات آب و هوایی و تخریب محیط زیست با شیوع ویروس کرونا

نوع مقاله : مقاله ترویجی

نویسندگان

1 معاونت پژوهشی و فناوری وزارت علوم، تحقیقات و فناوری، تهران، ایران

2 مرکز تحقیقات بیوشیمی و بیوفیزیک ، دانشگاه تهران

3 دانشگاه شیراز علوم زیست شناسی، آزمایشگاه شیمی پروتئین(PCL) ایران شیراز

چکیده

طی یکصد سال گذشته بسیاری از بیماری‌های همه‌گیرانسانی با منشأ ویروسی از حیوانات وحشی و یا حتی اهلی به انسان منتقل شده است. پژوهشگران معتقدند که دخالت انسان در طبیعت و تغییرات سریع محیط‌های زیست طبیعی نسبت به هر لحظه دیگر تاریخ زمین‌شناسی، فرصت‌ زیادی برای تکامل ویروس‌های ویرانگر را فراهم ساخته است. همچنین هجوم انسان‌‌ها به زیستگاه‌های طبیعی حیوانات وحشی، ما را در معرض تماس بیشتر با آنها قرار می‌دهد. تحقیقات نشان می‌دهد که دمای بالا، پرتوهای فرابنفش نور خورشید و رطوبت موجود در هوا نقش مهمی در مقابله با ویروس کرونا دارد. پرتوهای فرابنفش هم مستقیماً به ماده ژنتیکی ویروس صدمه می‌زند و هم به ساخت ویتامین D و پپتید بتا-اندورفین که توان سیستم ایمنی بدن را بالا می‌برد، کمک می‌کند. همچنین پژوهش‌ها نشان می‌دهد که هوای خشک و بازه دمایی بین ۵ تا ۱۰ درجه سانتی‌گراد شرایط مطلوبی برای گسترش همه‌گیری ویروس کرونا ایجاد می‌کند. با این همه از آنجایی‌که ویروس‌های کرونا مقاومت محیطی قابل‌‌توجهی دارند، به نظر نمی‌رسد که گرمای تابستان به‌‌تنهایی برای مقابله با این ویروس مهلک کافی باشد. در پایان یادآور می شود که به موازات کنترل همه‌گیری بیماری کووید-۱۹ محدود کردن چرخه پیدایش ویروس‌های مهلک جدید با کاهش دخالت بشر در طبیعت و زیستگاه‌های طبیعی حیوانات قابل دستیابی است.

کلیدواژه‌ها


عنوان مقاله [English]

Climate Change and Environmental Destruction in Connection with the Outbreak of Coronavirus

نویسندگان [English]

  • Mohammad Sadegh Oliaei 1
  • Faezeh Moosavi-Movahedi 2
  • Reza Yousefi 3
1 Department of Research and Technology, Ministry of Science, Research and Technology, Tehran, Iran
2 Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
3 Department of Biology, Faculty of Sciences, University of Shiraz
چکیده [English]

Over the past hundred years, many pandemic diseases of viral origin have been transmitted from wild or even domestic animals to humans. Researchers believe that human intervention in nature and the rapid change of natural environments have provided more opportunities for the evolution of new destructive viruses than at any other time in geological history. Human invasion of wildlife habitats also exposes us to more contact with them. Research shows that high temperatures, ultraviolet rays of sunlight and humidity play an important role in killing the coronavirus. Ultraviolet rays both directly damage the genetic material of the virus and help make vitamin D and beta-endorphin peptide as both boost the body's immune system. Studies also show that dry air and temperatures in the range of 5 to 10 °C create a favorable condition for the spread of the coronavirus. However, since coronaviruses have considerable environmental resistance, the summer heat alone does not seem to be sufficient to combat the deadly virus. Therefore, in parallel with controlling COVID-19 disease, it is also important to limit the emergence cycle of new deadly viruses by reducing human involvement in nature and the natural habitats of animals.

کلیدواژه‌ها [English]

  • Advancement of Science# Discourse of Advancement of Science
  • Web of Science
  • Scientific Document
  • Quantity of Science Production
  • Quality of Science Production
  • Challenges of Research in Iran

[۱]. موسوی موحدی، فائزه، یوسفی، رضا، (۱۳۹۸). ویروس کرونای جدید: از پیشگیری درمان تا سازوکار تکثیر و گسترش در بدن انسان. نشریه نشاء علم مجلد ۱۰, ۴۲-۵۳.
[۲]. حبیبی رضائی، مهران، یوسفی، رضا، (۱۳۹۹). راهکارهای مهم مقابله با ویروس کرونای جدید: از میراث‌های کهن طب سنتی تا واکسن‌های نوین. نشریه نشاء علم مجلد ۱۰, ۱۰۰-۱۱۹.
[3]. Anthony, S.J., Epstein, J.H., Murray, K.A., Navarrete-Macias, I., Zambrana-Torrelio, C.M., Solovyov, A., Ojeda-Flores, R., Arrigo, N.C., Islam, A., Khan, S.A., et al. (2013). A strategy to estimate unknown viral diversity in mammals. MBio 4.
[4]. Lipkin, W.I. (2014). Zoonoses. In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases (Elsevier Inc.), pp. 3554–3558.
[5]. Hubálek, Z. (2003). Emerging human infectious diseases: Anthroponoses, zoonoses,and sapronoses [1]. Emerg. Infect. Dis. 9, 403–404.
[6]. Messenger, A.M., Barnes, A.N., and Gray, G.C. (2014). Reverse zoonotic disease transmission (Zooanthroponosis): A systematic review of seldom-documented human biological threats to animals. PLoS One 9.
[7]. Blanco, E. (2013). Structure and Physics of Viruses Available at: http://link.springer.com/10.1007/978-94-007-6552-8 [Accessed June 5, 2020].
[8]. Sharp, P.M., and Hahn, B.H. (2011). Origins of HIV and the AIDS pandemic. Cold Spring Harb. Perspect. Med. 1.
[9]. Leroy, E.M., Kumulungui, B., Pourrut, X., Rouquet, P., Hassanin, A., Yaba, P., Délicat, A., Paweska, J.T., Gonzalez, J.P., and Swanepoel, R. (2005). Fruit bats as reservoirs of Ebola virus. Nature 438, 575–576.
[10]. Furuse, Y., Suzuki, A., and Oshitani, H. (2010). Origin of measles virus: Divergence from rinderpest virus between the 11th and 12th centuries. Virol. J. 7, 52.
[11]. de Wit, E., van Doremalen, N., Falzarano, D., and Munster, V.J. (2016). SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 14, 523–534.
[12]. Rihtarič, D., Hostnik, P., Steyer, A., Grom, J., and Toplak, I. (2010). Identification of SARS-like coronaviruses in horseshoe bats (Rhinolophus hipposideros) in Slovenia. Arch. Virol. 155, 507–514.
[13]. Lau, S.K.P., Luk, H.K.H., Wong, A.C.P., Li, K.S.M., Zhu, L., He, Z., Fung, J., Chan, T.T.Y., Fung, K.S.C., and Woo, P.C.Y. (2020). Possible Bat Origin of Severe Acute Respiratory Syndrome Coronavirus 2. Emerg. Infect. Dis. 26. Available at: http://wwwnc.cdc.gov/eid/article/26/7/20-0092_article.htm.
[14]. Kurane, I. (2010). The Effect of Global Warming on Infectious Diseases. Osong Public Heal. Res. Perspect. 1, 4–9.
[15]. Barnes, C.S., Alexis, N.E., Bernstein, J.A., Cohn, J.R., Demain, J.G., Horner, E., Levetin, E., Nel, A., and Phipatanakul, W. (2013). Climate change and our environment: The effect on respiratory and allergic disease. J. Allergy Clin. Immunol. Pract. 1, 137–141.
[۱۶]. بهنام راد، محمد، تقوی، فرشته، موسوی موحدی، فائزه، موسوی موحدی،علی‌اکبر، (۱۳۹۴)، تغییرات اقلیم، گرمایش جهانی و دیابت. نشریه نشاء علم مجلد ۶, ۶۱-۶۷.
[17]. MacLachlan, N.J. (2017). Coronaviridae. In Fenner’s Veterinary Virology (Elsevier), pp. 435–461.
[18]. Vabret, A., Dina, J., Brison, E., Brouard, J., and Freymuth, F. (2009). Coronavirus humains (HCoV). Pathol. Biol. 57, 149–160.
[19]. Walls, A.C., Park, Y.J., Tortorici, M.A., Wall, A., McGuire, A.T., and Veesler, D. (2020). Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 181, 281-292.e6.
[20]. Heurich, A., Hofmann-Winkler, H., Gierer, S., Liepold, T., Jahn, O., and Pohlmann, S. (2014). TMPRSS2 and ADAM17 Cleave ACE2 Differentially and Only Proteolysis by TMPRSS2 Augments Entry Driven by the Severe Acute Respiratory Syndrome Coronavirus Spike Protein. J. Virol. 88, 1293–1307.
[21]. Yousefi, R., and Moosavi-Movahedi, A.A. (2020). Achilles’ heel of the killer virus: the highly important molecular targets for hitting SARS-CoV-2 that causes COVID-19. J. Iran. Chem. Soc. 17, 1257–1258.
[22]. Peiris, J.S.M., Lai, S.T., Poon, L.L.M., Guan, Y., Yam, L.Y.C., Lim, W., Nicholls, J., Yee, W.K.S., Yan, W.W., Cheung, M.T., et al. (2003). Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361, 1319–1325.
[23]. Van Der Hoek, L., Pyrc, K., Jebbink, M.F., Vermeulen-Oost, W., Berkhout, R.J.M., Wolthers, K.C., Wertheim-Van Dillen, P.M.E., Kaandorp, J., Spaargaren, J., and Berkhout, B. (2004). Identification of a new human coronavirus. Nat. Med. 10, 368–373.
[24]. Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506.
[25]. Geller, C., Varbanov, M., and Duval, R.E. (2012). Human coronaviruses: Insights into environmental resistance and its influence on the development of new antiseptic strategies. Viruses 4, 3044–3068.
[26]. Chan, K.H., Peiris, J.S.M., Lam, S.Y., Poon, L.L.M., Yuen, K.Y., and Seto, W.H. (2011). The Effects of Temperature and Relative Humidity on the Viability of the SARS Coronavirus. Adv. Virol. 2011, 1–7.
[27]. Otter, J.A., Donskey, C., Yezli, S., Douthwaite, S., Goldenberg, S.D., and Weber, D.J. (2016). Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: The possible role of dry surface contamination. J. Hosp. Infect. 92, 235–250.
[28]. Barreca, A.I., and Shimshack, J.P. (2012). Absolute Humidity, Temperature, and Influenza Mortality: 30 Years of County-Level Evidence from the United States. Am. J. Epidemiol. 176, S114–S122.
[29]. Lowen, A.C., Mubareka, S., Steel, J., and Palese, P. (2007). Influenza Virus Transmission Is Dependent on Relative Humidity and Temperature. PLoS Pathog. 3, e151. Available at: https://dx.plos.org/10.1371/journal.ppat.0030151 [Accessed June 3, 2020].
[30]. Luo, W., Majumder, M.S., Liu, D., Poirier, C., Mandl, K.D., Lipsitch, M., and Santillana, M. (2020). The role of absolute humidity on transmission rates of the COVID-19 outbreak. medRxiv, 2020.02.12.20022467.
[31]. Bu, J., Peng, D.-D., Xiao, H., Yue, Q., Han, Y., Lin, Y., Hu, G., and Chen, J. (2020). Analysis of meteorological conditions and prediction of epidemic trend of 2019-nCoV infection in 2020. medRxiv, 2020.02.13.20022715.
[32]. Bukhari, Q., and Jameel, Y. (2020). Will Coronavirus Pandemic Diminish by Summer? SSRN Electron. J.
[33]. Bannister-Tyrrell, M., Meyer, A., Faverjon, C., and Cameron, A. (2020). Preliminary evidence that higher temperatures are associated with lower incidence of COVID-19, for cases reported globally up to 29th February 2020. medRxiv, 2020.03.18.20036731.
[34]. Araujo, M.B., and Naimi, B. (2020). Spread of SARS-CoV-2 Coronavirus likely to be constrained by climate. medRxiv, 2020.03.12.20034728.
[35]. Wang, J., Tang, K., Feng, K., and Lv, W. (2020). High Temperature and High Humidity Reduce the Transmission of COVID-19. SSRN Electron. J.
[36]. Chin, A.W.H., Chu, J.T.S., Perera, M.R.A., Hui, K.P.Y., Yen, H.-L., Chan, M.C.W., Peiris, M., and Poon, L.L.M. (2020). Stability of SARS-CoV-2 in different environmental conditions. The Lancet Microbe 1, e10. Available at: https://linkinghub.elsevier.com/retrieve/pii/S2666524720300033.
[37]. Rabenau, H.F., Cinatl, J., Morgenstern, B., Bauer, G., Preiser, W., and Doerr, H.W. (2005). Stability and inactivation of SARS coronavirus. Med. Microbiol. Immunol. 194, 1–6.
[38]. Schoeman, D., and Fielding, B.C. (2019). Coronavirus envelope protein: Current knowledge. Virol. J. 16, 1–22.
[39]. Paynter, S. (2015). Humidity and respiratory virus transmission in tropical and temperate settings. Epidemiol. Infect. 143, 1110–1118.
[40]. Watanabe, Y., Bowden, T.A., Wilson, I.A., and Crispin, M. (2019). Exploitation of glycosylation in enveloped virus pathobiology. Biochim. Biophys. Acta - Gen. Subj. 1863, 1480–1497.
[41]. Rauth, A.M. (1965). The Physical State of Viral Nucleic Acid and the Sensitivity of Viruses to Ultraviolet Light. Biophys. J. 5, 257–273.
[42]. Setlow, R. (1960). The use of action spectra to determine the physical state of DNA in vivo. Biochim. Biophys. Acta 39, 180–181.
[43]. Lytle, C.D., and Sagripanti, J.-L. (2005). Predicted Inactivation of Viruses of Relevance to Biodefense by Solar Radiation. J. Virol. 79, 14244–14252.
[44]. Friedberg, E., Walker, G., Siede, W., and Wood, R. (2005). DNA repair and mutagenesis Available at: https://books.google.com/books?hl=en&lr=&id=VAKsBAAAQBAJ&oi=fnd&pg=PT41&dq=Friedberg,+E.+C.,+G.+C.+Walker,+and+W.+Siede.%0A1995.+DNA+repair+and+mutagenesis,+p.+24-31.+ASM+Press,+Washington,+D.C.&ots=2uKlWPMZYa&sig=uHjWa6V2gmd1_kUn8invN-8ejAk [Accessed May 22, 2020].
[45]. Lytle, C.D., Aaronson, S.A., and Harvey, E. (1972). Host-cell reactivation in mammalian cells. Int. J. Radiat. Biol. 22, 159–165.
[46]. Darnell, M.E.R., Subbarao, K., Feinstone, S.M., and Taylor, D.R. (2004). Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV. J. Virol. Methods 121, 85–91.
[47]. Darnell, M.E.R., and Taylor, D.R. (2006). Evaluation of inactivation methods for severe acute respiratory syndrome coronavirus in noncellular blood products. Transfusion 46, 1770–1777.
[48]. Geier, D.A., Kern, J.K., and Geier, M.R. (2018). A longitudinal ecological study of seasonal influenza deaths in relation to climate conditions in the United States from 1999 through 2011. Infect. Ecol. Epidemiol. 8, 1474708.
[49]. Mims, F.M. (2005). Avian Influenza and UV-B Blocked by Biomass Smoke. Environ. Health Perspect. 113. [50]. Asyary, A., and Veruswati, M. (2020). Sunlight exposure increased Covid-19 recovery rates: A study in the central pandemic area of Indonesia. Sci. Total Environ. 729, 139016. Available at: https://linkinghub.elsevier.com/retrieve/pii/S004896972032533X [Accessed May 22, 2020].
[51]. Lange, N.E., Litonjua, A., Hawrylowicz, C.M., and Weiss, S. (2009). Vitamin D, the immune system and asthma. Expert Rev. Clin. Immunol. 5, 693–702.
[52]. Slominski, A.T., Zmijewski, M.A., Skobowiat, C., Zbytek, B., Slominski, R.M., and Steketee, J.D. (2012). Sensing the environment: Regulation of local and‌ global homeostasis by the skin’s neuroendocrine system. Adv. Anat. Embryol. Cell Biol.
[53]. Sprouse-Blum, A.S., Smith, G., Sugai, D., and Parsa, F.D. (2010). Understanding endorphins and their importance in pain management. Hawaii Med. J.
[54]. National Academies of Sciences, Engineering, and M. (2020). Rapid Expert Consultation on SARS-CoV-2 Survival in Relation to Temperature and Humidity and Potential for Seasonality for the COVID-19 Pandemic (April 7, 2020) (Washington, D.C: National Academies Press).
[55]. Lofgren, E., Fefferman, N.H., Naumov, Y.N., Gorski, J., and Naumova, E.N. (2007). Influenza Seasonality: Underlying Causes and Modeling Theories. J. Virol. 81, 5429–5436.
[56]. Fares, A. (2013). Factors influencing the seasonal patterns of infectious diseases. Int. J. Prev. Med. 4, 128–132.
[57]. Sajadi, M.M., Habibzadeh, P., Vintzileos, A., Shokouhi, S., Miralles-Wilhelm, F., and Amoroso, A. (2020). Temperature and Latitude Analysis to Predict Potential Spread and Seasonality for COVID-19. SSRN Electron. J.