مروری بر اثرات مخرب رادیکال های آزاد در ایجاد بیماری های مختلف

نوع مقاله : مقاله ترویجی

نویسندگان

گروه شیلات، دانشکده منابع طبیعی، دانشگاه گیلان، صومعه سرا، ایران

چکیده

بدن انسان برای متابولیسم نرمال، انتقالات سیگنالی و نظم فعالیت های سلولی به اکسیدان ها (رادیکال های آزاد) و آنتی اکسیدان ها احتیاج دارد. رادیکال های آزاد می توانند برای بدن مفید یا مضر باشند. وجود تعادل بین رادیکال های آزاد و آنتی اکسیدان ها برای عملکرد فیزیولوژیک بدن لازم است. اما گاهی اوقات سیستم دفاع آنتی اکسیدانی در انسان قادر به ایجاد مقاومت در برابر رادیکال های آزاد نیست. در نهایت تعادل بین رادیکال های آزاد و آنتی اکسیدان های داخلی از بین می رود؛ این عدم تعادل، استرس اکسیداتیو نامیده می شود. هدف از این تحقیق، مروری بر رادیکال های آزاد و بیان نقش استرس اکسیداتیو در ایجاد بیماری های انسانی است. نتایج بیان می کند که استرس اکسیداتیو ناشی از عدم تعادل رادیکال های آزاد و آنتی اکسیدان ها، باعث بیماری های قلبی و عروقی، عصبی، سکته مغزی، بیماری های کبدی، تولید مثلی، دیابتی، اوتیسم، سرطان و پیری و... می گردد. عوامل زیادی در ایجاد استرس اکسیداتیو نقش دارند که انسان با دور نگه داشتن خود از این عوامل می تواند نقش مهمی در کاهش اثرات رادیکال های آزاد ایفا کند.

کلیدواژه‌ها


عنوان مقاله [English]

A Review of The Destructive Effects of Free Radicals on Various Diseasesa

نویسندگان [English]

  • Aria Babakhani
  • Alireza Rabiepour
  • Alireza Hodhodi
Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Gilan, Iran
چکیده [English]

The human body needs oxidants (free radicals) and antioxidants for normal metabolism, signal transduction, and regulation of cellular activity. Free radicals can be beneficial or harmful to the body. A balance between free radicals and antioxidants is essential for the body's physiological function, But sometimes the human antioxidant defense system in is unable to develop resistance to free radicals. Eventually the balance between free radicals and internal antioxidants is lost; This imbalance is called oxidative stress. The purpose of this study is to review free radicals and express the role of oxidative stress in causing human diseases. The results indicate that oxidative stress due to the imbalance of free radicals and antioxidants causes cardiovascular disease, neurosis, stroke, liver disease, reproduction, diabetes, autism, cancer, aging and so on. There are many factors involved in causing oxidative stress that by staying away from these factors, humans can play an important role in reducing the effects of free radicals.

کلیدواژه‌ها [English]

  • Free radical
  • Antioxidant
  • Oxidative stress
  • Disease
1[. مهری کدخدایی، (1380). ضایعات ناشی از اعاده مجدد جریان خون و نقش رادیکال­های آزاد اکسیژن در ایجاد آن، نشریه فیزیولوژی و فارماکولوژی، دوره 5، شماره 1، صص 97- 105.
[2]. Riley, P.A. (1994). Free radicals in biology: oxidative stress and effects of ionizing radiation, International Journal of Radiation Biology, Vol. 65, PP. 27-33.
[3]. Urata, K., Narahara, H., Tanaka, Y., Egashira, T., Takayama, F., and Miyakawa, I. (2001). Effect of endotoxininduced reactive oxygen species on sperm motility, Fertility and sterility, Vol. 76, PP. 163–166.
[4]. Vishal-Tandon, M., Gupta, B., and Tandon, R. (2005). Free radicals/reactive oxygen species, JK Practitioner, Vol. 12, PP. 143–148.
[5]. Halliwell, B., andGutteridge, J. (1984). Oxygen toxicity, oxygen radicals, transition metals and disease, Biochemistry Journal, Vol. 219, No. 1, PP. 1-14.
[6]. Halliwell, B.R., and Gutteridge, J.M.C. (1999). Free Radicals in Biology and Medicine. New York: Oxford University Press, USA.
[7]. Halliwell, B. (2007). Biochemistry of oxidative stress, Biochemistry Society Transactions, Vol. 35, No. 5, PP. 1147-1150.
[8]. Cadenas, E. (1989). Biochemistry of oxygen toxicity, Annual review of biochemistry, Vol. 58, No. 1, PP. 79–110.
[9]. Cadenas, E., and Sies, H. (1998). The lag phase, Free Radical Research, Vol. 28, No. 6, PP. 601–609.
[10]. Fang, Y.Z., Yang, S., and Wu, G. (2002). Free radicals, antioxidants, and nutrition, Nutrition, Vol. 18, No. 10, PP. 872–879.
[11]. Li, S., Tan, H.Y., Wang, N., Zhang, Z.J., Lao, L., Wong, C.W., and Feng, Y. (2015). The role of oxidative stress and antioxidants in liver diseases, International journal of molecular sciences, Vol. 16, No. 11, PP. 26087-26124.
[12]. Halliwell, B., and Gutteridge, J.M. (1992). Biologically relevant metal ion‐dependent hydroxyl radical generation An update. FEBS letters, Vol. 307, No. 1, PP. 108–112.
[13]. Gomes, A., Fernandes, E., and Lima, J.L. (2005). Fluorescence probes used for detection of reactive oxygen species, Journal of biochemical and biophysical methods,Vol. 65, No. 2-3, PP. 45-80.
[14]. Augusto, O., and Miyamoto, S. (2011). Principles of Free Radical Biomedicine. In: Pantopoulos K, Schipper HM, eds. Oxygen Radicals and Related Species. São Paulo: Nova Science Publishers, Vol. 1, PP. 1-23.
[15]. Lopaczynski, W., and Zeisel, S.H. (2001). Antioxidants, programmed cell death, and cancer. Nutrition Research, Vol. 21, No. 1-2, PP. 295–307.
[16]. Glade, M.J. (2003). The role of reactive oxygen species in Health and Disease Northeast Regional Environmental Public Health Center University of Massachusetts, Amerst Nutrition, Vol. 19, PP. 401–403
[17]. Aldred, S., (2007). Oxidative and nitrative changes seen in lipoproteins following exercise. Atherosclerosis, Vol. 192, No. 1, PP. 1-8.
[18]. Du Plessis, S.S., Agarwal, A., Halabi, J., and Tvrda, E. (2015). Contemporary evidence on the physiological role of reactive oxygen species in human sperm function, Journal of assisted reproduction and genetics, Vol, 32, No. 4, PP. 509-520.
[19]. Poli, G., Leonarduzzi, G., Biasi, F., and Chiarpotto, E. (2004). Oxidative stress and cell signaling. Current Medicinal Chemistry, Vol. 11, PP. 1163–82.
[20]. Halliwell, B. (1996). Antioxidants in human health and disease, Annual review of nutrition, Vol.16, No. 1, PP. 33-50.
[21]. Sies, H., and Stahl, W. (1995). Vitamins E and C, B- carotene, and other carotenoids as antioxidants, American Journal of Clinical Nutrition, Vol. 62, PP. 1315-1321.
[22]. Tapiero, H., Tew, K.D., Nguyen Ba, G., and Mathe, G. (2002). Polyphenols: do they play a role in the prevention of human pathologies?, Biomed Pharmacother, Vol. 56, PP. 181-200.
]23[. علیرضا هدهدی، آریا باباخانی لشکان و هانیه رستم­زاد، (1400). مروری بر خواص زیست­فعال ترکیبات فلوروتانین از جلبک­های قهوه­ای دریایی، نشریه نشا علم، دوره 12، شماره 1، صص 81-87.
]24[. فاطمه غفوری، نسیم کیان­والا، ثمین حقیقی پوده و یحیی سفیدبخت، (1398). رادیکال­های آزاد، استرس اکسایشی و نقش آنتی­اکسیدان­ها، نشریه نشا علم، دوره 10 دهم، شماره 1، صص 33-41.
[25]. Rahman, K. (2007). Studies on free radicals, antioxidants, and co-factors, Clinical Interventions in Aging, Vol. 2, No. 2, PP. 219-236.
[26]. Lobo, V., Patil, A., Phatak, A., and Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health, PharmacognOSY Reviews, Vol. 4, No. 8, PP. 118-126.
[27]. Lü, J.M., Lin P.H., Yao Q., and Chen C. (2010). Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems, Journal of cellular and molecular medicine, Vol. 14, No. 4, PP. 840-860.
[28]. Zhou, Y., Zheng, J., Li, S., Zhou, T., Zhang, P., and Li, H.B. (2016). Alcoholic beverage consumption and chronic diseases, International Journal Environmental Research, Vol. 13, No. 6, PP. 522.
[29]. Khlebnikov, A.I., Schepetkin, I.A., Domina, N.G., Kirpotina, L.N., and Quinn, M.T. (2007). Improved quantitative structure–activity relationship models to predict antioxidant activity of flavonoids in chemical, enzymatic, and cellular systems, Bioorganic & medicinal chemistry, Vol. 15, No. 4, PP. 1749-1770.
[30]. Collins, A.R. (2005). Antioxidant intervention as a route to cancer prevention, European Journal of Cancer, Vol. 41, No. 13, PP. 1923-1930.
[31]. Kaur, C., and Kapoor, H.C. (2001) Antioxidants in fruits and vegetables – the millennium’s health, International Journal of Food Science Technology, Vol. 36, No. 7, PP. 703-725.
[32. Alañón, M.E., Castro-Vázquez, L., Díaz- Maroto, M.C., Gordon, M.H., and Pérez-Coelloa, M.S. (2011). A study of the antioxidant capacity of oak wood used in wine ageing and the correlation with polyphenol composition, Food Chemistry, Vol. 128, No. 4, PP. 997-1002.
[33]. Droge, W., (2002). Free radicals in the physiological control of cell function, Physiological Reviews, Vol. 82, PP. 47-95.
[34]. Lee, J., Koo, N., and Min, D.B. (2004). Reactive oxygen species, aging and antioxidative nutraceuticals, Comprehensive Reviews in Food Science and Food Safety, Vol. 3, PP. 21-33.
[35]. Valko M, Izakovic M, Mazur M, Rhodes, C.J., and Telser, J. (2004). Role of oxygen radicals in DNA damage and cancer incidence, Molecular and Cellular Biochemistry, Vol. 266, No. 1-2, PP. 37-56.
[36]. Pisochi, A.M., and Negulescu, G.P. (2011). Methods for total antioxidants activity determination. A. Review, Biochemistry and Analytical Biochemistry, Vol. 1, PP. 1-10
[37]. Sharma, P.J. and Singh, R.P. (2013). Evaluation of antioxidant activity in foods with special References to TEAC method, American Journal of Food Technology, Vol 8, PP. 83-101.
[38]. Tabatabaei, S., Zhao, T., Awojoyogbe, O.B., and Moses, F. (2009). International Journal of Heat and Mass Transfer 45, 1247.
[39]. De Grey, A.D. (1999). The mitochondrial free radical theory of aging: RG Landes Austin
[40]. Kumar, H., Lim, H.W., More, S.V., Kim, B.W., Koppula, S., Kim, I.S.,  Choi, DK., (2012). The role of free radicals in the aging brain and Parkinson’s disease: convergence and parallelism, International journal of molecular sciences, Vol. 13, No. 8, PP. 478-504.
[41]. Agarwal, R.S., and Sohal, R.S. (1996). Relationship between susceptibility to protein oxidation, aging, and maximum life span potential of different species, Experimental Gerontology, Vol. 31, No. 3, PP. 365–372.
[42]. Ames B.N., Shigenaga M.K., and Hagen T.M. (1993). Oxidants, antioxidants and degenerative diseases of aging, Proceedings of the national Academy of Sciences of the United States of America, Vol. 90, No. 17, PP. 7915–7922.
[43]. Kowald, A., and Kirkwood, T.B. (2000). Accumulation of defective mitochondria through delayed degradation of damaged organelles and its possible role in ageing of post-mitotic and dividing cells, Journal of theoretical biology, Vol. 202, No. 2, PP. 145-160.
[44]. Scott, J. (2004). Pathophysiology and biochemistry of cardiovascular disease, Current Opinion in Genetics and Development, Vol. 14, PP. 271-279.
[45]. Schachinger, V., and Zeiher, A.M. (2002). Atherogenesis-recent insights into basic mechanisms and their clinical impact, Nephrology Dialysis Transplantation, Vol. 17, PP. 2055- 2064.
[46]. Galle, J., Hansen-Hagge, T., Wanner C., and Seibold, S. (2006). Impact of oxidized low density lipoprotein on vascular cells, Atherosclerosis, Vol. 185, No. 2, PP. 219–226.
[47]. Mariani E, Polidori MC, Cherubini A, and  Mecocci, P. (2005). Oxidative stress in brain aging, neurodegenerative and vascular diseases: An overview. Journal of Chromatography B, Vol. 827, No. 1, PP. 65–75.
[48]. Piantadosi, C.A., and Zhang, J. (1996). Mitochondrial generation of reactive oxygen species after brain ischemia in the rat, Stroke, Vol. 27, PP. 327–32.
[49]. Alexandrova, M., Bochev, P., Markova, V., Bechev, B., Popova, M., Danovska, M., and Simeonova, V.
(2004). Dynamics of free radical processes in acute ischemic stroke: infl uence on neurological status and outcome, Journal of Clinical Neuroscience, Vol. 11, No. 5, PP. 501-506.
[50]. Simms, N.R., Anderson, M.F. (2002). Mitochondrial contributions to tissue damage in stroke. Neurochemistry International, Vol. 40, PP. 511-526.
[51]. Cherubini, A., Vigna, G.B., Zuliani, G., Ruggiero, C., Senin, U., and Fellin, R. (2005). Role of anti-oxidants in atherosclerosis: epidemiological and clinical update, Current pharmaceutical design, Vol. 11, No. 16, PP. 2017-2032.
[52]. Emerit J, Edeas M, and Bricaire F. (2004). Neurodegenerative diseases and oxidative stress, Biomedicine and Pharmacotherapy, Vol. 58, PP. 39–46.
[53]. Selkoe, D.J. (2004). Alzheimer disease: mechanistic understanding predicts novel therapies, Annals of Internal Medicine, Vol. 140, PP. 627-638.
[54]. Floyd, R.A., and Hensley, K. (2002). Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases, Neurobiol Aging, Vol. 23, No. 5, PP. 795–807.
[55]. Ahmadi, J., Jahanbazi Jahan Abad, A., Barahimi, A., and Atashi, A. (2015). Introduction of Long Non-Coding RNAs as Novel Biomarkers in Central Nervous System Disorders, The Neuroscience Journal of Shefaye Khatam, Vol. 3, No. 3, PP. 98-112
[56]. Völkel, W., Sicilia, T., Pähler, A., Gsell, W., Tatschner, T., Jellinger, K.,  Leblhuber, F., Riederer, P., K Lutz, W., and E Götz, M. (2006). Increased brain levels of 4-hydroxy-2-nonenal glutathione conjugates in severe Alzheimer's disease, Neurochemistry international, Vol. 48. No. 8, PP. 679-86.
[57]. Margolis, R.L., and Ross, C.A. (2003). Diagnosis of Huntington’s disease, Clinical Chemistry, Vol. 49, PP. 1726–1732.
[58]. Montine, T.J., Beal, M.F., Robertson, D.,   Cudkowicz, M.E.,  Biaggioni, I.,  O'Donnell, H.,  Zackert, W.E.,  Roberts, L.J., and Morrow, J.D. (1999). Cerebrospinal fl uid F2-isoprostanes are elevated in Huntington’s disease, Neurology, Vol. 52, No. 5, PP. 1104–1115.
[59]. Mota S.I., Costa R.O., Ferreira I.L., Santana I., Caldeira G.L., Padovano C.,  Fonseca, A.C., Baldeiras, I.,  Cunha, C.,  Letra, L.,  Oliveira, C.R.,  Pereira, C.M.F., and  Rego, A.C. (2015). Oxidative stress involving changes in Nrf2 and ER stress in early stages of Alzheimer's disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, Vol. 1852, No. 7, PP. 1428-1441.
[60]. Moszczynska, A., and Yamamoto, B.K. (2011). Methamphetamine oxidatively damages parkin and decreases the activity of 26S proteasome in vivo, Journal of neurochemistry, Vol. 116, No. 6, PP. 1005-1017.
[61]. Moore, D.J., West, A.B., Dawson, V.L., and Dawson, T.M., (2005). Molecular pathology of Parkinson’s disease. Annual Review of Neuroscience, Vol. 28, PP. 57-87.
[62]. Migliore, L., Petrozzi, L., Lucetti, C.,  Gambaccini, G.,  Bernardini, S.,  Scarpato, R.,  Trippi, F.,  Barale,R.,  Frenzilli, G.,  Rodilla, V., and Bonuccelli, U. (2002). Oxidative damage and cytogenetic analysis in leukocytes of Parkinson’s disease patients, Neurology, Vol. 58, No. 12, PP. 1809–1815.
[63]. Agil, A., Durản, R., Barrero, F.,  Morales, B., Araúzo, M., Alba, F., Teresa Miranda, M., Prieto, I., Ramírez, M., and Vives, F. (2006). Plasma lipid peroxidation in sporadic Parkinson’s: Role of the L-dopa, Journal Neuro Science, Vol. 240, PP.31–6.
[64]. Schwarting, R., and Huston, J. (1997). Behavioral and neurochemical dynamics of neurotoxic meso-striatal dopamine lesions, Neurotoxicology, Vol. 18, No. 3, PP. 689-708.
[65]. Dauer, W., (2003). Przedborski S. Parkinson's disease: mechanisms and models, Neuron, Vol. 39, No. 6, PP. 889-909
[66]. Siddiqui, A., Rane, A., Rajagopalan, S., Chinta, S.J., and Andersen, J.K. (2016). Detrimental effects of oxidative losses in parkin activity in a model of sporadic Parkinson's disease are attenuated by restoration of PGC1alpha, Neurobiology of disease, Vol. 93, PP. 115-120.
[67]. Chaste, P., and Leboyer, M. (2012). Autism risk factors: genes, environment, and gene-environment interactions, Dialogues in clinical neuroscience, Vol. 14, No. 3, PP. 281292.
[68]. Ono, H., Sakamoto, A., and Sakura, N. (2001). Plasma total glutathione concentrations in healthy pediatric and adult subjects, Clinica chimica acta, Vol. 312, No. 1, PP. 227-239.
[69]. Perry, S.W., Norman J.P., Litzburg, A., and Gelbard, H.A. (2004). Antioxidants are required during the early critical period, but not later, for neuronal survival, Journal of neuroscience research, Vol 78, No. 4, PP. 485-492.
[70]. Melnyk, S., Fuchs, G.J., Schulz, E., Lopez, M., Kahler, S.G, Fussell, J.J, Bellando, J., Pavliv, O., Rose, S., Seidel, L., W Gaylor, D., and Jill James, S., (2012). Metabolic imbalance associated with methylation dysregulation and oxidative damage in children with autism, Journal of autism and developmental disorders, Vol. 42, No. 3, PP. 367-377.
[71]. Ghezzi, P., and Bonetto, V. (2003). Redox proteomics: identification of oxidatively modified proteins, Proteomics, Vol. 3, No. 7, PP. 1145-1153.
[72]. McGinnis, W.R. (2004). Oxidative stress in autism, Alternative Therapies in Health and Medicine, Vol. 10, No. 6, PP. 22- 36.
[73]. Gelderman, K.A., Hultqvist, M., Olsson, L.M., Bauer, K., Pizzolla, A., and Olofsson, P. (2007). Rheumatoid arthritis: the role of reactive oxygen species in disease development and therapeutic strategies, Antioxidant and Redox Signaling, Vol. 9, No. 10, PP.1541–1567.
[74]. Rahman, T., Hosen, I., Islam, M., and Shekhar, H. (2012). Oxidative stress and human health. Advances in Bioscience and Biotechnology, Vol. 3, PP. 997-1019.
[75]. Klaunig, J.E., and Kamendulis, L.M. (2004). The role of oxidative stress in carcinogenesis. Ann Rev Pharmacol Toxicol, Vol. 44, PP. 239–67.
[76]. Ames, B.N., and Shigenaga, M,K. (1992). Oxidants are a major contributor to aging, Annals of the New York Academy of Sciences, Vol. 663, PP. 85-96.
[77]. Dizdaroglu, M., Jaruga, P., Birincioglu, M., and Rodriguez, H. (2002). Free radical-induced damage to DNA: mechanisms and measurement 1, 2, Free Radical Biology and Medicine, Vol. 32, No. 11, PP. 1102-1115.
[78]. Dreher, D., and Junod, A.F. (1996). Role of oxygen free radicals in cancer development. Europen Journal of Cancer, Vol. 32, No. 1, PP. 30-38.
[79]. Trachootham, D., Lu, W., Ogasawara, M.A., Nilsa, R.D., and Huang, P. (2008). Redox Regulation of Cell Survival, Antioxid Redox Signal, Vo. 10, No. 8, PP. 1343-1374.
[80]. Pelicano, H.I., Carney, D., and Huang, P. (2004). ROS stress in cancer cells and therapeutic implications, Drug Resist Update, Vol. 7, No. 2, PP. 97-110.
[81]. Liou, G-Y., Storz, P. (2010). Reactive oxygen species in cancer. Free Radical Research, Vol. 44, No. 5. 
[82]. Rao, C.S.S., and Kumari, D.S. (2012). Changes in plasma lipid peroxidation and the antioxidant system in women with breast cancer, International Journal of Basic and Applied Sciences, Vol. 1, No. 4, PP. 429-38.
[83]. Al-Dalaen, S., and Al-Qtaitat, A. (2014). Review article: oxidative stress versus antioxidants. American journal of bioscience and bioengineering, Vol. 2, No. 5, PP. 60-71.
[84]. Jay, D., Hitomi, H., and Griendling, K.K. (2006). Oxidative stress and diabetic cardiovascular complications, Free Radical Biology and Medicine, Vol. 40, No. 2, PP. 183–92.
[85]. Wright JR, E., Scism-Bacon J.L., and Glass L.C. (2006). Oxidative stress in type2 diabetes: the role of fasting and postprandial glycemia, International Journal Clinical Practice, Vol. 60, No. 3, PP. 308–314.
[86]. Poggioli, S., Hilaire, B., and Friguet, B. (2002). Age-related increase of proteins glycation in peripheral blood lymphocytes is restricted to preferential target proteins, Experimental Gerontology, Vol. 37, PP. 1207-1215.
[87]. Wautier, J.L., Schmidt, A.M. (2004). Protein glycation, Circulation Research, Vol. 95, No. 3, PP. 233–238.
[88]. Madamanchi, N.R., Vendrov, A., and Runge, M.S. (2005). Oxidative stress and vascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology, Vol. 25, PP. 29-38.
[89]. Kowrulu, R.A., Koppolu, P., Chakrabarti, S., and Chen, S. (2003). Diabetes-induced activation of nuclear transcriptional factor in the retina and its inhibition by antioxidants, Free Radical Research, Vol. 37, No. 11, PP. 1169–1180.
[90]. Ryu, J.K., Lee, T, Kim, D.J,  Park, I.S.,  Yoon, S.M.,  Lee, HS.,  Song, S.U., and Suh, J.K. (2005). Free radical scavenging activity of Korean red ginseng for erectile dysfunction in non insulin dependent diabetes mellitus rats, Urology, Vol. 65, No. 3, PP. 611-615.
[91]. Esrefoglu, M., (2012). Oxidative stress and benefits of antioxidant agents in acute and chronic hepatitis, Hepatitis Monthly, Vol. 12, No. 3, 160 P.
[92]. Ekhlasi, G., Shidfar, F., Agah, S., Merat, S., and Hosseini, K.A.F. (2013). Effect of pomegranate juice intake on lipid profile in patients with non-alcoholic fatty liver disease, Razi Journal of Medicine Science, Vol. 20, No. 111, PP.  30-39.
[93]. Tremellen, K. (2008). Oxidative stress and male infertility--a clinical perspective. Hum Reprod Update, Vol. 14, No. 3, PP. 243-258.
[94]. Buzadzic, B., Vucetic, M., Jankovic, A., Stancic, A., Korac, A., Korac, B., and Otasevic, V. (2015). New insights into male (in) fertility: the importance of NO. British journal of pharmacology, Vol. 172, No. 6, PP. 1455-1467.
[95]. Fujii, J., Iuchi, Y., and Okada, F. (2005). Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system, Reproductive biology and endocrinology, Vol. 3, No. 1, PP. 1-10.
[96]. Sugino, N., Takiguchi, S., Kashida, S., Karube, A., Nakamura, Y., and Kato, H. (2000). Superoxide dismutase expression in the human corpus luteum during the menstrual cycle and in early pregnancy, Molecular human reproduction, Vol. 6, No. 1, PP. 19-25.
[97]. Sekhon, L., Gupta, S., Kim, Y., and Agarwal, A. (2010). Female infertility and antioxidants, Current Women's Health Reviews, Vol. 6, No. 2, PP. 84-95.